A dynamic and generic cloud computing model for environmental analysis using in-situ sensing data applied to glacier mass balance

(Mer de Glace, Chamonix; East Loven Glacier, Spitsberg)

E. RANISAVLJEVIC¹, F. DEVIN¹, Y. LE NIR¹, J.M. FRIEDT², C. MARLIN³, M. GRISelin⁴, D. LAFFLY⁵

¹ Ecole International des Sciences du Traitement de l'Information, Pau, France
² Univ. de Franche-Comté, FEMTO-ST, UMR 6174 CNRS, Besançon, France
³ Univ. de Paris-sud, IDES, UMR 8148 CNRS, Orsay, France
⁴ Univ. de Franche-Comté, THEMA, UMR 6049 CNRS, Besançon, France
⁵ Univ. de Toulouse, GEODE, UMR 5602 CNRS, Toulouse, France
Summary

Introduction
I. Snow cover and glacier evolution
II. In-situ sensing constraints
III. Cloud computing and Web Services
IV. Tasks architecture
V. Model
Conclusion
Introduction

• Hydro Sensor FLOWS project, supervised by M. Griselin (C. Marlin and D. Laffly)
 – Map the temporal evolution of the snow cover
 – Couple it with a hydrologic model
• East Loven glacier: experimental field
 – 4 years of different readings
 – Generate a huge data base

How can Cloud Computing improve the processing of the data base?
East Loven glacier
Snow Cover and Glacier Evolution

- **Remote sensing**: daily satellite imagery is not always accessible
 - Cost
 - Poor weather conditions (heavy cloud cover)
 - Fast events not visible
- **In situ sensing**: Ground based autonomous automated digital camera
 - 3 pictures / day
 - Huge data base
 - Reconstruct the satellite view

(D. Laffly et al., Cambridge 2010)
Six digital cameras are positioned around the glacier basin, providing complete glacier coverage.
In-situ sensing: image processing

- Projection of the picture, from the oblique view to a plan view
- Construction of a mosaic
- Classify the different phenomena (snow, ice)
- Constraints processing
In-situ Constraints: Atmospheric Disturbance

E. Ranisavljevic et al., A dynamic and generic cloud computing model for environmental analysis using in-situ sensing data applied to glacier mass balance
In-situ Constraints: Electronic Deficiency

- Poor weather conditions
 - Microcontroller “asleep” for several days
- Electromagnetic perturbation: reset of the microcontroller
 - 6 pictures / day
- Discharge of the camera intern battery
 - Loss of the picture’s date
In-situ Constraints:
Geometry Variations

- Modification of the shooting’s parameters

E. Ranisavljevic *et al.*, A dynamic and generic cloud computing model for environmental analysis using in-situ sensing data applied to glacier mass balance
In-situ constraints adjusted by computer

- Manually process all the pictures (over 30 000)
- Specific and heterogenous tools

Real need to provide an application:
- dynamically change the processing
- be as generic as possible to fit other needs
- avoid human operations as much as possible

E. Ranisavljevic *et al.*, A dynamic and generic cloud computing model for environmental analysis using in-situ sensing data applied to glacier mass balance
Cloud Computing

Set of resources, servers and applications offered “as a service” over a network.

• Advantages:
 – Easiness of access
 – Large storage capacity
 – Lightness of application
 – Modular: add, remove, modify services
 – Scalable
 • Increase of users connected to the service
 • Increase the computing capacity according to the needs
 • Fault tolerance

E. Ranisavljevic et al., A dynamic and generic cloud computing model for environmental analysis using in-situ sensing data applied to glacier mass balance
Web Services

• Software offered as a service (SAAS)
• Multiple tasks
 – Cleaning / Usability
 – Dating
 – Cropping
 – Projecting
 – Constructing a mosaic
 – Classify glacier’s phenomena (ice, snow …)
E. Ranisavljevic et al., A dynamic and generic cloud computing model for environmental analysis using in-situ sensing data applied to glacier mass balance
E. Ranisavljevic et al., A dynamic and generic cloud computing model for environmental analysis using in-situ sensing data applied to glacier mass balance
Planner and Scheduler

Planner:
• define a workflow
• achieve a goal
• satisfy constraints

Scheduler:
• organize workflow
• temporal constraints

E. Ranisavljevic et al., A dynamic and generic cloud computing model for environmental analysis using in-situ sensing data applied to glacier mass balance
E. Ranisavljevic et al., A dynamic and generic cloud computing model for environmental analysis using in-situ sensing data applied to glacier mass balance
Example: Cropping Service

List of control points, Picture → Cropping Service → Picture cropped
Conclusion

• Model:
 – Generic (web services)
 – Dynamic (planner and scheduler)

• The environmental sciences and the geoengineering generate a huge data base (Big Data). Cloud computing is an answer to some processing constraints and storage constraints.

• Evolution of the languages and paradigms of computer science.
Thank you