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Modeling haul-out behavior of walruses in Bering
Sea ice

Mark S. Udevitz, Chadwick V. Jay, Anthony S. Fischbach, and Joel L. Garlich-Miller

Abstract: Understanding haul-out behavior of ice-associated pinnipeds is essential for designing and interpreting popula-
tion surveys and for assessing effects of potential changes in their ice environments. We used satellite-linked transmitters
to obtain sequential information about location and haul-out state for Pacific walruses, Odobenus rosmarus divergens (11-
liger, 1815), in the Bering Sea during April of 2004, 2005, and 2006. We used these data in a generalized mixed model of
haul-out bout durations and a hierarchical Bayesian model of haul-out probabilities to assess factors related to walrus haul-
out behavior, and provide the first predictive model of walrus haul-out behavior in sea ice habitat. Average haul-out bout
duration was 9 h, but durations of haul-out bouts tended to increase with durations of preceding in-water bouts. On aver-
age, tagged walruses spent only about 17% of their time hauled out on sea ice. Probability of being hauled out decreased
with wind speed, increased with temperature, and followed a diurnal cycle with the highest values in the evening. Our
haul-out probability model can be used to estimate the proportion of the population that is unavailable for detection in
spring surveys of Pacific walruses on sea ice.

Résumé : 11 est essentiel de comprendre le comportement d’échouerie chez les pinnipedes associés aux glaces pour plani-
fier et interpréter les inventaires démographiques et pour évaluer les effets des changements potentiels dans leurs environ-
nements glacials. Nous avons utilisé des émetteurs reliés aux satellites pour obtenir des informations séquentielles sur la
position et 1’état d’échouerie de morses du Pacifique (Odobenus rosmarus divergens (Illiger, 1815)) dans la mer de Béring
en avril 2004, 2005 et 2006. Ces données utilisées dans un modele de mélange généralisé de durée des épisodes
d’échouerie et un modele hiérarchique bayésien des probabilités d’échouerie nous servent a évaluer les facteurs reliés aux
comportement d’échouerie chez les morses et a mettre au point le premier modele prédictif sur le comportement
d’échouerie chez les morses dans un habitat de glace de mer. Les morses marqués passent en moyenne 9 h par épisode
d’échouerie, mais les durées des périodes d’échouerie ont tendance a s’allonger en fonction de la durée des périodes précé-
dentes passées en mer. Globalement, les morses marqués passent en moyenne seulement 17 % de leur temps en échouerie
sur la glace de mer. La probabilité d’échouerie diminue en fonction de la vitesse du vent, augmente avec la température et
suit un cycle journalier avec un maximum en soirée. Notre modele de probabilité des échoueries peut servir a estimer la
proportion de la population qui est a I’abri de la détection lors des inventaires printaniers des morses du Pacifique sur la
glace de mer.

[Traduit par la Rédaction]

Introduction

The Pacific walrus (Odobenus rosmarus divergens (Il-
liger, 1815)) is one of two subspecies of walruses (Odo-
benus rosmarus (L., 1758)) worldwide, and one of five ice-
associated pinnipeds in the Bering Sea (Burns et al. 1981).
Walruses use sea ice for birthing, nursing, resting, molting,
access to offshore foraging areas, and refuge from predation
and disturbance (Fay 1982). Projected changes in the distri-
bution of seasonal ice in the Bering Sea (Overland and
Wang 2007) will likely affect walrus distribution and behav-
ior and could affect the status of this population (Ray et al.
2006; Rausch et al. 2007).

The amount of time that ice-associated pinnipeds spend
on ice depends on physiological requirements such as those

associated with reproduction, foraging, nursing, and molting,
and is constrained by environmental conditions affecting
thermoregulation (Wells et al. 1999). Knowledge of how
temporal and environmental factors affect haul-out behavior
is essential for understanding the biology of these species as
well as for practical applications such as determining the
best times to conduct surveys (Southwell 2005) and estab-
lishing baselines for evaluating industrial effects (Moulton
et al. 2002). Environmentally induced changes in haul-out
behavior could affect populations by altering energy require-
ments of individual walruses (Fay and Ray 1968) or disease
transmission rates (Burek et al. 2008).

Factors such as time of day, weather, and other environ-
mental conditions have been related to haul-out behavior of
various pinnipeds (Simpkins et al. 2003b; Bengtson and
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Cameron 2004; Frost et al. 2004; Reder et al. 2004; Hay-
ward et al. 2005). Walruses using terrestrial haul-out sites
spend about 65%—-85% of their time in the water (Born and
Knutsen 1997; Gjertz et al. 2001; Jay et al. 2001; Born et al.
2005; Acquarone et al. 2006; Lydersen et al. 2008). Haul-
out behavior of walruses at these sites has been related to
factors such as time of day, wind, temperature, and precipi-
tation (Fay and Ray 1968; Salter 1979; Born and Knutsen
1997). Very little is known about haul-out behavior of wal-
ruses in sea ice habitats; the only previously published quan-
titative information was based on proportions of walruses
observed in the water during aerial surveys and walrus hunts
in the Bering Sea (Fay and Ray 1968) and telemetry data
from a single male in the Greenland Sea (Born et al. 2005).

The US Fish and Wildlife Service, the US Geological
Survey, and the Russian agencies GiproRybFlot (Research
and Engineering Institute for the Development and Opera-
tion of Fisheries) and ChukotTINRO (Pacific Research Insti-
tute of Fisheries and Oceanography, Chukotka Branch)
collaborated to conduct a range-wide survey of the Pacific
walrus population in April 2006. This time period was se-
lected for the survey because the entire Pacific walrus popu-
lation is within the ice pack of the Bering Sea at that time
(Gilbert 1999). The survey used high-altitude infrared im-
agery to detect and enumerate walruses on sea ice (Burn et
al. 2006; Udevitz et al. 2008). Satellite-linked radio tags
were deployed on walruses in the Bering Sea during March
and April 2004-2006, to provide data that could be used to
estimate the portion of the population that was in the water
and therefore not available to be detected with the infrared
imagery. Previous surveys of the Pacific walrus population
only enumerated walruses hauled out on ice or land and did
not account for the portion of the population in the water
(Gilbert 1999).

Here, we report results from this 3-year tagging study.
Our objectives were to (i) use the radio-tag data to quantify
the portion of time walruses spend hauled out on Bering Sea
ice during April, (i) quantify factors that might be related to
that haul-out behavior, and (iii) develop a model of haul-out
behavior that could be used to estimate the portion of the
population that was in the water during an April survey.
Our analyses considered both the probability of a walrus
being hauled out on the ice and the durations of individual
bouts of haul-out or in-water activity. We use a generalized
mixed effects model (McCullagh and Nelder 1999; Littell et
al. 2006) and information theoretic methods (Burnham and
Anderson 2002) to make inferences about durations of indi-
vidual bouts of activity relative to characteristics of the
bouts and walruses. We use a Bayesian analogue of this
model (Gelman et al. 1997) to consider effects of these fac-
tors as well as weather and time of day on haul-out proba-
bilities. The Bayesian model allowed imputation of missing
values for weather data and simultaneous model selection in
one general framework. Inclusion of the additional covari-
ates provided a model that could be used to estimate the
portion of the population that was in the water during a sur-
vey. Both models used random effects, as necessary, to ac-
count for synchronicity and individual heterogeneity in
walrus behavior.

Can. J. Zool. Vol. 87, 2009

Materials and methods

Field methods

Satellite radio tags were deployed on walruses hauled out
on Bering Sea ice during 8-20 April 2004, 17-19 March
2005, and 24-30 March 2006. In 2004 and 2005, deploy-
ments were in the southeastern Bering Sea near Nunivak Is-
land (Fig. 1). In 2006, deployments were in the northern
Bering Sea south of St. Lawrence Island (Fig. 1). In all
years, we used aircraft reconnaissance to locate areas with
aggregations of hauled-out walruses. We used ice-hardened
vessels or icebreakers to access these areas and made final
approaches to walruses in small boats or on foot. Radio tags
were deployed with air guns or crossbows from a distance of
about 10 m (Jay et al. 2006). The tags were fitted with
barbed heads that embedded in the animal’s blubber layer
on impact. We attempted to place tags in the dorsal region
midway between the shoulders on each targeted walrus.

We deployed tags opportunistically, as walrus groups
were encountered, while attempting to distribute tags as
widely as possible among walruses in each tagging region
(i.e., the regions near Nunivak Island or St. Lawrence Is-
land). Our deployment technique required us to target indi-
viduals lying with their backs exposed, and that could be
approached downwind without obstruction from neighboring
walruses. The barbed heads were too large for the thin skin
and blubber layers of young animals (Jay et al. 2000), so we
deployed tags only on adult walruses. Within these con-
straints, we also attempted to distribute tags approximately
equally between males and females. When possible, we
used a crossbow sampling system to obtain tissue biopsies
from tagged walruses, and final sex determination was based
on molecular analysis of these samples (Fischbach et al.
2008). Sex was classified as undetermined for walruses
without biopsy samples. Protocols for walrus tagging and as-
sociated activities were reviewed and approved by the US
Geological Survey, Alaska Science Center Animal Care and
Use Committee and conducted under US Fish and Wildlife
Service Permit No. MA801652-3.

Three different types of radio tags were used (Jay et al.
2006), differing primarily in the structure of their barbed
heads, their radio housing, and the configuration of their on-
board software (Table 1). Each radio tag had a conductivity
sensor with external contacts that detected whether it was in
or out of water. Depending on the tag, conductivity was
measured every 1-10 s with the results accumulated over
periods of 20-60 min (Table 1). We refer to these 20-
60 min periods as “behavioral intervals™ (or just “interval”
if the context is clear). If >85% or >90% (Table 1) of the
measurements for a given behavioral interval indicated the
tag was out of water, the animal was considered to be
hauled out during that interval. We defined a ‘“haul-out
bout” as the period of time a walrus spent on the ice be-
tween in-water intervals. Likewise, we defined an “in-water
bout” as the period of time a walrus spent in the water be-
tween hauled-out intervals.

Data on haul-out state were continuously recorded and
stored, but transmissions were restricted according to duty
cycles that varied among tags (Table 1). Transmissions
were also suspended whenever the radio tag was submerged
to conserve battery life. Tags had battery capacities that al-
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Fig. 1. Geographic locations associated with data on haul-out status for 43 walruses (Odobenus rosmarus divergens) monitored with satellite-
linked radio tags in the Bering Sea, April 2004-2006. These are the locations of the 2341 observations of haul-out behavior with associated

location data (Table 5) used for modeling haul-out probabilities.
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lowed transmissions for at least 3 to 4 weeks. Information
from 1-5 days of consecutive behavioral intervals was en-
coded in each transmission. Thus, the information from any
given behavioral interval was received if there was at least
one successful transmission during the 1-5 day period while
this information was stored on the tag. This provided con-
siderable redundancy and resulted in a nearly continuous re-
cord of haul-out behavior. We retained data only from
transmissions that passed a checksum test designed to iden-
tify transmission errors (Peterson and Brown 1961). We ex-
cluded all data from the first 24 h after deployment of each
tag because the tagging process may have altered behavior
during this period. We also excluded all data from the last
recorded behavior period (i.e., last series of intervals with
the same recorded behavior) because the transmitter must

have either stopped functioning or been shed during this pe-
riod.

Data preparation

Records of haul-out data were received and geographic
locations of tagged walruses were estimated by the Argos
location and data collection system (Collecte Localisation
Satellites 2007). Location estimates were filtered, using the
Douglas Argos-Filter Algorithm (Douglas 2006), to retain
only those locations with spatial errors expected to average
less than about 5 km. This filter assesses the plausibility of
locations based on spatial redundancy, Argos location qual-
ity, maximum rate of movement, and turning angles of suc-
cessive movements. We set the algorithm to retain (i) all
standard class locations, (i) nonstandard class locations
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Table 1. Characteristics of satellite-linked radio tags used to collect data on haul-out behavior of walruses (Odobenus rosmarus diver-

gens) in the Bering Sea, 2004-2006.

Attachment No. of tagged Interval length
type* Year walruses” Duty cycle® Dry rule? (min)®

Tether 2004 1 On 18 h starting 0600 UTC, maximum 400 tx per d 285% 60

Tether 2005 1 On 18 h starting 1600 UTC, maximum 250 tx per d >85% 60

Implant 2004 4 On 24 h >85% 60

Implant 2005 4 On 18 h starting 1600 UTC, maximum 100 tx per d >85% 60

Post 2004 7 On 24 h >90% 20

Post 2006 26 On 14 h starting 1700 UTC >90% 30

“Attachment types are described by Jay et al. (2006).
’Includes only walruses with haul-out data used for modeling.

‘Daily time period during which transmissions are made and, in cases where the number of transmissions per day is limited, the maximum number of

transmissions (tx) allowed per day.

“Percentage of the conductivity measurements for a given interval that must indicate the tag was out of water if the walrus is to be considered hauled out

during that interval.

‘Length of the time interval during which conductivity measurements are accumulated to determine haul-out status for the interval.

within 2 km of the previous or subsequent location, and (iii)
remaining locations based on a distance-angle-rate filter that
accepted a maximum walrus speed of 10 km/h and rejected
locations at the apex of highly acute angles (RATECOEF =
25, Douglas 2006).

We obtained estimates of air temperature (at 2 m above
sea level), barometric pressure (at sea level), and wind speed
(at 10 m above sea level) from the North American Re-
gional Reanalysis (NARR) data set produced by the Na-
tional Centers for Environmental Prediction (Mesinger et al.
2006). This data set contained estimates at 3 h intervals
(0300, 0600, ..., 2400 Alaska Standard Time (AST)) for
each point in an approximately 20 km x 20 km grid cover-
ing the Bering Sea.

We considered data only from April of each year, to cor-
respond with the time period when a range-wide survey of
the Pacific walrus population was conducted in 2006. The
month of April extends from what is typically the end of
the breeding season to when the population begins migrating
to summer ranges (Fay 1982). We used location data (and
associated NARR data) from all tagged walruses during this
period to estimate parameters for imputation distributions of
weather variables (see below). For analyses of walrus behav-
ior (i.e., haul-out probabilities or bout durations), we further
restricted consideration to walruses with tags that provided
continuous sequences of at least 10 days of haul-out data.
This restriction eliminated data from tags that functioned
only briefly or intermittently. All tags provided substantially
more locations for intervals when walruses were hauled out
than for intervals when they were in water because the tags
could not transmit when they were submerged. However, a
properly functioning tag, placed dorsally between the
shoulders, could transmit much of the time while a walrus
was on the water surface. Therefore, for behavior analyses,
we also restricted consideration to walruses with tags that
provided location information for at least 2% of the in-water
behavioral intervals.

Analyses of bout durations were based on all of the com-
plete bouts within this telemetry data set. A bout was con-
sidered complete if there were no missing data on haul-out
state for any interval between the initiating and terminating
changes in haul-out state. Duration of each bout was esti-

mated by summing the durations of the included behavioral
intervals.

Analyses of haul-out probabilities required linkage of wal-
rus behavior to NARR weather data. Therefore, for these
analyses, we restricted our consideration of walrus telemetry
data to only those behavioral intervals that included a
NARR time point. Though behavioral intervals varied in
length (depending on tag type, Table 1), we assumed that
the estimated behavior for the interval containing a NARR
time point provided the best estimate of the behavior at that
time point. If there was more than one Argos location asso-
ciated with a behavioral interval, we used the location that
was closest in time to the NARR time point. In cases of
ties, we used the earliest location. Not all behavioral inter-
vals had associated Argos locations. This is because,
whereas we obtained a nearly continuous record of haul-out
behavior from each tagged walrus, Argos locations could be
obtained only at the actual times of transmissions and then
only if the quality and number of transmissions were suffi-
cient. For behavioral intervals with Argos locations, we esti-
mated the corresponding weather conditions to be those of
the NARR time point at the NARR grid point closest to the
Argos location. For behavioral intervals without Argos loca-
tions, we used imputation to estimate associated weather
conditions as described below.

Analysis of bout durations

We used a generalized linear mixed effects model
(McCullagh and Nelder 1999; Littell et al. 2006) with an
identity link and lognormal errors to model bout durations.
The form of this model was

Z;j ~ Lognormal(1;;)
where
nij = Bo + BiXuj + ..o, + BrXkij + @i

and Z; is duration of the jth bout (hours) for walrus i; Xp;,
k=1, ..., K, are values of the associated covariates; and w;
is a random effect for walrus i, with

2
w; ~ Normal(0, o))
As potential covariates, we considered a three-level cate-
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Table 2. Akaike’s information criterion (AIC) values for models of walrus (Odobenus ros-
marus divergens) haul-out and in-water bout durations in the Bering Sea, April 2004-2006.

No. of
Model  Variables® parameters  AIC AAIC?
1 DRY, LBOUT, DRY x LBOUT 6 2754 0
2 YEAR, DRY, LBOUT, DRY x LBOUT 8 2756 3
3 SEX, DRY, LBOUT, DRY x LBOUT 8 2757 4
4 YEAR, SEX, DRY, LBOUT, DRY x LBOUT 10 2759 5
5 DRY, LBOUT 5 2767 13
6 LBOUT 4 2890 137
7 DRY 4 2991 237
8 Null 3 3074 320

“Null model includes only an intercept and the random effect of walrus. Other models also include the
variables indicated. Variables are as follows: YEAR, year (2004, 2005, or 2006); SEX, sex (female, male, or
undetermined); DRY, haul-out state (0 = in water, 1 = hauled out on ice); LBOUT, length of previous bout
(log hours); and DRY x LBOUT, interaction of DRY and LBOUT.

® AAIC is the difference between the AIC value for the specified model and the model with the lowest AIC

value, calculated before rounding.

gorical variable for the year of tagging (2004 or 2005 versus
20006), a three-level categorical variable for sex of the wal-
rus (female or male versus undetermined), a binary variable
that identified current haul-out state (in water versus hauled
out on ice), duration of the previous bout (log hours), and
the interaction between current haul-out state and duration
of previous bout (Table 2). Inclusion of a random effect for
walrus, along with an effect for duration of previous bout,
accounted for potential correlations among repeated obser-
vations on the same walrus. Specifying duration of previous
bout as a separate fixed effect allowed explicit estimation of
the magnitude of this effect.

We initially fit a series of models containing different
plausible subsets of the covariates (Table 2). These models
were fit with maximum likelihood, and Akaike’s informa-
tion criterion (AIC, Burnham and Anderson 2002) was used
to select the final model. The final model was then refit with
restricted maximum likelihood (Littell et al. 2006) to reduce
bias in estimates of the variance components (Littell et al.
2006). Deviance and deviance residuals were used to assess
the fit of the final model to the data (McCullagh and Nelder
1999).

Analysis of haul-out probabilities

We used data on haul-out state and weather conditions as-
sociated with the individual behavioral intervals for each
walrus to model the probability of a walrus being hauled
out on the ice at any given time. The sample of behavioral
intervals with associated Argos locations taken by itself,
however, would provide substantially biased estimates of
haul-out probabilities because, as noted above, the probabil-
ity of obtaining a location was higher during intervals when
a walrus was hauled out than when it was in the water. To
eliminate this telemetry-induced bias, and to fully utilize all
of the information in the data, we used imputation (Ibrahim
et al. 2005) to estimate values of weather variables for be-
havioral intervals that did not have associated Argos loca-
tions and therefore could not be directly linked to NARR
grid points. We used a Bayesian approach (Ibrahim et al.
2005) to incorporate imputation of missing weather values
with simultaneous model selection (Yang et al. 2005). This

approach required specification of models for the observed
data (likelihood) and the parameters (prior distributions),
along with models for the missing data values, which were
treated as additional parameters to be estimated. For model
selection, this framework was embedded in an additional
level of hierarchy that required specification of a prior dis-
tribution for the models themselves (Dellaportas et al.
2002). We used Markov Chain Monte Carlo (MCMC) meth-
ods, implemented with WinBUGS software (Spiegelhalter et
al. 2003), for estimation. All inference was based on esti-
mated posterior distributions.

The basic likelihood for the observed data was a general-
ized linear mixed effects model with

[1] Y;; ~ Bernoulli(p;)
where
logit (pir) = By + B1 X1ir +, ..., + BxXkir + 0 + 1,

Y, in this likelihood, is a binary variable indicating
whether or not walrus i was hauled out on the ice during in-
terval ¢, and Xy;, k = 1, ..., K, are values of the associated
covariates. w; and t, are random effects for walrus and time
point, respectively, with

w; ~ Normal(0, o2

7; ~ Normal (0, %)

The random effects account for variation among walruses
and among time points that is not accounted for by the fixed
effects. These random effects also provide an effective
mechanism to account for important aspects of the overall
correlations that may result from using data from different
walruses at the same time point and different time points
for the same walrus. The random time effect, for example,
accounts for synchrony in walrus behavior. We used a lag
variable, discussed below, to account for potential serial cor-
relation among repeated observations on the same walrus.
The intercept and random effects were included in all mod-

Published by NRC Research Press



1116

els we considered, with non-informative prior distributions
given by

Bo ~ Normal(0, 1.0 x 10°)

/0% ~ Gamma(0.001, 0.001)

1/0? ~ Gamma(0.001, 0.001)

As noted above, all of the weather covariates had missing
values for some behavioral intervals. However, there was
considerable information about the missing values contained
in observations for other walruses with non-missing data for
behavioral intervals near the same time. This is because all
tagged walruses tended to be in the same general subregion
of the Bering Sea during any given behavioral interval, and
weather conditions tended to be similar within localized re-
gions. Therefore, we modeled the missing values for
weather covariates as

Xyir ~ Normal(pi,, o7,)

where p,; is the mean and a%, is the variance estimated from
all of the non-missing data within 6 h of interval 7 (i.e.,
from the series of five successive intervals beginning at in-
terval ¢ — 2). This resulted in a separate imputation distribu-
tion for each variable at each time point, with an average
imputed value for any given time point that was the mean
for the corresponding 12 h window, and a variance that re-
flected the variation in observed values for that window.
Using random draws from these distributions in each
MCMC iteration allowed the imputation uncertainty to be
accounted for as a part of the variability in the estimated
posterior distributions for model parameters and haul-out
probabilities. We used this approach for estimating missing
values, rather than simple interpolation of missing locations
and subsequent linkage to NARR grid points, because plots
of walrus movements indicated that interpolation would
likely result in many large errors relative to the scale of the
grid points, and it was not clear how the uncertainty asso-
ciated with the interpolation could be adequately accounted
for during the subsequent model selection and estimation
processes.

We considered a series of models that differed in the co-
variates that were included as fixed effects. Potential covari-
ates represented effects for time of day, weather, year, sex,
and previous haul-out state (Table 3). We considered five
different representations for the time-of-day effect. To pro-
vide a representation that did not impose any functional
form on the relation, we used an eight-level categorical var-
iable (TODI) that allowed estimation of a different effect
for each of the eight NARR time points per day. Plots of
the data suggested that there might be more structure to this
effect, however, with haul-out proportions generally increas-
ing to their highest values in the evening (1800 AST) and
then decreasing to their lowest values by late morning
(0900-1200 AST). Therefore, we also considered a poten-
tially more parsimonious representation as a smooth, sym-

Can. J. Zool. Vol. 87, 2009

metric, diurnal cycle (TOD2) the two-

parameter sine function

Bicos(2mXy;,24) + B,sin(27X,;,/24)

specified by

where X|;; is hours past midnight. We also considered three
other potentially more parsimonious categorical representa-
tions of the time-of-day effect. These included a binary cov-
ariate (TOD3) that distinguished only between the morning
period (0900-1200 AST) and a base level, a binary covari-
ate (TOD4) that distinguished only between the evening
period (1800 AST) and a base level, and a three-level cov-
ariate (TODS) that distinguished between both the morning
and evening periods and a base level. We allowed no more
than one of these representations of the time-of-day effect to
be included in any single model.

As weather covariates, we considered barometric pressure,
air temperature, wind speed, and the interaction of air tem-
perature and wind speed, which allowed for a windchill ef-
fect on walrus behavior. We also considered the absolute
change in barometric pressure over the past 3 h, over the
past 12 h, and over the past 24 h, and the interactions of
these changes with the current barometric pressure. These
interactions allowed for the possibility that walruses might
respond differently to changes in pressure depending on the
current barometric pressure. We allowed no more than one
time scale for change in barometric pressure to be included
in any single model. Also, we did not allow interactions to
be included without the associated main effects. All weather
variables were normalized for use in analyses.

Finally, we also considered three-level categorical covari-
ates for the year of tagging (2004 or 2005 versus 2006) and
sex of the walrus (female or male versus undetermined), and
a binary covariate that distinguished between whether or not
the walrus was hauled out on the ice at the previous time
point. This last variable provided a mechanism to account
for serial correlation among repeated observations on the
same walrus (with a correlation structure that decays expo-
nentially relative to the 3 h time steps of the model), as
well as providing a direct estimate of the magnitude of this
effect. Thus, including the possibility of no effect for each
of the covariates, there were 6 possible representations for
time-of-day effects, 5 possible representations for the com-
bined effects of temperature and wind, 11 possible represen-
tations for the combined effects of barometric pressure and
its change over time, and the possibility of including (or ex-
cluding) effects for year, sex, and previous haul-out state.
Taking all combinations of these possibilities resulted in a
total of 2640 models that we considered.

We followed the approach of Ntzoufras (2002) to imple-
ment a MCMC technique (Dellaportas et al. 2002) for model
selection. This approach involved the introduction of an in-
dicator vector y with elements y;, k = 1, ..., K, inserted as
coefficients of the S, in likelihood [1]. We let y; = 1 if the
variable corresponding to S, was included in the model and
yr = 0 otherwise. Thus, every possible model was uniquely
represented by its value for y, which consisted of a sequence
of ones and zeros indicating which variables were or were
not included in the model. The objective of this approach
was to provide an estimate of the posterior probability of
each considered model that could be used as a basis for
model selection.
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Table 3. Variables considered for inclusion in a model of walrus (Odobenus rosmarus divergens) haul-
out probabilities in the Bering Sea, April 2004-2006.

Marginal posterior

Variable Description probability?
Time-of-day variables

TOD1 Time of day (0300, 0600, 0900, 1200, 1500, 1800, 2100, 2400) 0.00
TOD2 Time of day (sine function) 0.07
TOD3 Time of day (2 categories: 0900-1200, other) 0.28
TOD4 Time of day (2 categories: 1800, other) 0.32
TODS Time of day (3 categories: 0900-1200, 1800, other) 0.30
Weather variables

PRS Barometric pressure 0.01
PDO03 Absolute value of change in barometric pressure over last 3 h 0.01
PD12 Absolute value of change in barometric pressure over last 12 h 0.01
PD24 Absolute value of change in barometric pressure over last 24 h 0.01
PX03 Interaction of PRS and PD03 0.00
PX12 Interaction of PRS and PD12 0.00
PX24 Interaction of PRS and PD24 0.00
TMP Air temperature 0.36
WND Wind speed 1.00
TXW Interaction of TMP and WND 0.02
Other variables

YEAR Year (2004, 2005, or 2006) 0.00
SEX Sex (female, male, or undetermined) 0.00
LDRY Previous haul-out state 1.00

“Proportion of MCMC model selection iterations that included the specified variable in the model, based on the final
100000 iterations from three separate chains of 200000 iterations each.

Prior distributions for the y, were specified as
vi ~ Bernoulli(py)

where y; =y, except in the cases of y; corresponding to
multivariate variables (i.e., categorical variables with more
than two levels). In those cases, y; represented the full set
of y, associated with the effect. The p, were specified so
that all 2640 models being considered had equal prior prob-
abilities (Ntzoufras 2002). Given the py, these prior distribu-
tions were conditionally independent, but the p, themselves
could depend on which other variables were in the model.

Prior distributions for the fB; associated with univariate
variables were specified as

B, ~ Normal(jy;, o)
with

e = vimi + (1 — v )My

or = vise+ (1= v)Sk

where m; = 0 and s, = 100 to provide relatively non-
informative priors when the associated variables were in-
cluded in the model. M) was the mean and S, was the variance
for By, estimated from a preliminary run of a full model (i.e.,
containing that variable and a full set of additional variables
permitted in the same model), as suggested by Ntzoufras
(2002). Priors for B; associated with multivariate variables
were multivariate Normal with parameters that were the mul-
tivariate analogues of p; and o7.

For MCMC estimation of the posterior distribution, we

used three separate chains of 200000 iterations each. The
first chain was initialized with all elements of p set to 0 as
starting values (i.e., the chain was initialized with a model
that did not include any of the variables). Subsequent chains
were initialized with values for p that had low estimated
posterior probability from the previous chains. We discarded
the first 100 000 iterations from each chain and used the last
100000 for estimation. To ensure that each of the separate
chains converged, we examined the posterior probabilities
estimated after adding each successive block of 10000 itera-
tions. We checked that addition of these subsequent blocks
did not change the relative ranking of the top models and
did not change the estimated posterior probabilities of these
models by more than 0.01. We also checked that the three
separate chains all converged to the same set of top-ranked
models and that the estimated posterior probabilities for
these models did not vary by more than 0.01 among chains.
The final 100000 iterations from each chain were combined
to give 300000 iterations used for estimating the posterior
distribution of the models.

We used the posterior distribution of the models to select
variables for inclusion in a final model. We then used
MCMC to estimate posterior distributions of the parameters
of this model based on likelihood [1] with only the selected
variables and without the additional structure required for
model selection. Prior distributions for the parameters in
this model were as described above except that we also
specified non-informative priors for the S associated with
the selected univariate variables as

B ~ Normal(0, 1.0 x 10°)
We used analogous multivariate Normal distributions as
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priors for B, associated with the selected multivariate varia-
bles.

We also estimated posterior distributions of predicted
haul-out state based on this final model. We estimated these
posteriors for two different types of predictions (Gelman et
al. 1997). First, we estimated the predicted haul-out state
for each of the observations in the data. These were obtained
by estimating Y;, in likelihood [1], using the estimated val-
ues of the parameters at each iteration of a chain. Because
these predictions were based on the observed values associ-
ated with the random effects (and possibly previous haul-out
state), they were applicable to specific walruses at specific
points in time and were primarily useful for assessing how
well the model fit the data. We used posterior means of
these predictions for comparison with observed haul-out pro-
portions.

To understand the implications of the model with respect
to walrus behavior in general, however, it is more useful to
have predictions that would be applicable to any walrus, se-
lected from the population at any given point in time. Thus,
we also estimated predicted haul-out state for specific com-
binations of variable values, while integrating over effects
that were walrus- or time-specific (i.e., the random effects
of walrus and time point, and possibly the fixed effect of
previous haul-out state). This was accomplished by includ-
ing additional observations with the specified combinations
of variable values, but with missing values for haul-out state
and the walrus- and time-specific variables. Current haul-out
state was estimated at each iteration using the estimated val-
ues of the parameters and random values for the walrus- and
time-specific variables. The random values for the walrus-
and time-specific variables were selected independently,
with equal probability from their distributions in the data.

For MCMC estimation with the selected model, we again
used three separate chains, but with only 7000 iterations
each. One chain was initialized with starting values of zero
for each of the B;. The other chains were initialized with
starting values of B, = u,; £ z|u|, where u; was the median
value for B; estimated from a preliminary run of a single
chain, and z was selected to be as large as possible without
causing numerical overflows. We discarded the first 3 000
iterations from each chain and used the last 4000 for esti-
mation. We assessed convergence by examining the trace
for each parameter over the iterations within chains (Spie-
gelhalter et al. 2003), Gelman—Rubin statistics for compari-
sons among chains (Brooks and Gelman 1998), and the ratio
of MCMC error to the posterior standard error for each pa-
rameter (Spiegelhalter et al. 2003). The final 4 000 iterations
from each chain were combined to give 12 000 iterations for
estimating posterior distributions of parameters and haul-out
probabilities. We summarized posterior distributions in
terms of means and 95% credibility intervals (with limits
defined as the 2.5% and 97.5% quantiles of the posterior
distribution).

Results

Analyses were based on behavior data from 43 walruses
(Tables 4 and 5). Periods with behavior data spanned 10-30
April in 2004 and the entire month of April in 2005 and
2006 (Fig. 2).
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Table 4. Numbers of observations of haul-out and in-water
bouts for tagged walruses (Odobenus rosmarus divergens)
in the Bering Sea, April 2004-2006.

No. of No. of haul-out  No. of in-water
Year walruses bouts bouts
2004 12 71 70
2005 5 40 41
2006 26 255 264
Total 43 366 375

Bout durations

The behavior data included observations of 741 complete
bouts of walrus in-water or on-ice activity (Table 4). Ob-
served durations of the periods walruses spent in water
ranged up to 303 h, but only 2% of these (8 bouts) lasted
longer than 180 h, and the average duration was 46 h
(Fig. 3). Observed durations of periods walruses spent
hauled out on ice tended to be much shorter, ranging only
up to 42 h, with an average of 9 h per bout (Fig. 3).

There was no evidence of differences in bout durations
being related to sex of the walrus or year of tagging
(Table 2). The lowest-AIC model of bout duration contained
effects for current haul-out state, duration of previous bout,
and the interaction of these two effects (Table 2). We se-
lected this model for obtaining final estimates of the param-
eters (Table 6). The estimated random effect of walrus was
about the same magnitude as its standard error (Table 6),
suggesting that there was little additional correlation among
observations of the same walrus that was not accounted for
by other variables in the model. Removing this random ef-
fect increased the AIC value of the model by only 0.74, and
had little effect on other parameter estimates, so we retained
this effect in the final model. Examination of deviance and
deviance residuals did not indicate any lack of fit for this fi-
nal model.

Model predictions were consistent with observed differen-
ces in durations of on-ice and in-water bouts, but the model
underestimated the longest durations (Figs. 3 and 4). This
discrepancy was most evident for in-water bouts because
these included several extreme values for observed durations
(Fig. 3). There was reasonably good correspondence be-
tween distributions of predicted and observed durations for
all values less than the mean observed durations (Fig. 3).
Mean predictions were also reasonably close to observed
values for all except the longest in-water bouts (Fig. 4).

Estimated mean durations tended to be shorter for haul-
out bouts than for in-water bouts overall, but in both cases,
duration increased with duration of the preceding bout
(Fig. 5). Differences in rates of increase corresponded to the
interaction term in the model (Table 6). Estimated mean
haul-out bout durations increased from about 2 to 11 h as
preceding in-water bouts increased from 1 to 303 h (Fig. 5).
Mean in-water bout durations increased from about 4 to
46 h as preceding on-ice bouts increased from 1 to 42 h
(Fig. 5). For both on-ice and in-water bouts, the effect of
preceding bout duration diminished as bouts got longer
(Fig. 5).
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Table 5. Numbers of observations of haul-out behavior and geographic location
for tagged walruses (Odobenus rosmarus divergens) in the Bering Sea, April

2004-2006.

No. of No. of behavioral  Total no. of No. of observations
Year walruses intervals? observations? with locations
2004 12 162 1299 570
2005 5 239 1027 175
2006 26 240 5915 1596
Total 43 641 8241 2341

“Includes a maximum of eight behavioral intervals per walrus per day that coincided with
NARR time points and could be used for modeling haul-out probabilities (see text).

An observation is a record of haul-out state for one walrus during one behavioral interval.
Totals include all observations of haul-out behavior used in the model, but not the additional
observations of weather conditions used only for imputation.

Fig. 2. Chronologies of haul-out behavior for 43 radio-tagged wal-
ruses (Odobenus rosmarus divergens) in the Bering Sea, April
2004-2006. Horizontal lines indicate the time periods with data
from the specified walruses. Bold segments indicate periods when
the walruses were hauled out on sea ice.
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Haul-out probabilities

There were 8241 observations of walrus haul-out behav-
ior associated with NARR time points (Table 5). Argos lo-
cations were obtained for 28% of these observations
(Table 5). Individual walruses spent 7% to 30% (mean =
17%) of their time hauled out on sea ice (Fig. 6). Consider-
ing only behavioral intervals with data for at least 10 tagged
walruses (n = 322 intervals), the percentage of walruses
hauled out during a given interval ranged from 0 to 71
(mean = 17%, Fig. 7). None of the tagged walruses were
hauled out during 25% (79) of those intervals.

There were an additional 47 walruses with transmitters
that did not function well enough to be included in the be-

Fig. 3. Frequency histograms of observed and predicted durations
of bouts of in-water and on-ice activity by walruses (Odobenus
rosmarus divergens) in the Bering Sea, April 2004-2006.
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havior data set, but provided 1514 additional locations for
time points within 6 h of at least one time point in the be-
havior data set. These were used to supplement the 2341 be-
havior observations that had locations (Table 5) to estimate
means and variances for the weather imputation distribu-
tions. Means and variances for individual imputation distri-
butions were estimated based on 2-107 observations (mean
number of observations per estimate = 29) from the corre-
sponding 12 h windows. Plots of weather variables for the
2341 behavior observations with locations (and therefore
non-missing weather values, Table 5) indicated that the im-
putation models were reasonable (Fig. S1).2

Each of the 18 variables we considered (Table 3) was in-
cluded in at least one model visited in the early iterations of
at least one of the Markov chains used for model selection.

2 Supplementary data for this article are available on the journal Web site (http://cjz.nrc.ca) or may be purchased from the Depository of
Unpublished Data, Document Delivery, CISTI, National Research Council Canada, Building M-55, 1200 Montreal Road, Ottawa, ON K1A
OR6, Canada. DUD 5306. For more information on obtaining material refer to http://cisti-icist.nrc-cnrc.gc.ca/eng/ibp/cisti/collection/unpub-

lished-data.html.
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Table 6. Parameter estimates for a model of durations of periods walruses
(Odobenus rosmarus divergens) spent in water and hauled out on ice in the

Bering Sea, April 2004-2006.

Parameter Description” Estimate SE

Po Intercept 1.04 0.14
Bi Coefficient for DRY = 0 0.86 0.18
B2 Coefficient for LBOUT 0.23 0.04
B3 Coefficient for (DRY = 0) x LBOUT 0.28 0.07
Ui Variance for random walrus effect 0.06 0.04
o? Residual variance 2.34 0.12

“See text and Table 2 for descriptions of variables.

Fig. 4. Comparison of observed and predicted durations of bouts of
in-water and on-ice activity by walruses (Odobenus rosmarus di-
vergens) in the Bering Sea, April 2004—-2006. Each point represents
a mean value for approximately 40 bouts, grouped in sets of in-
creasing duration of previous bout. Predictions that exactly match
observations would lie on the indicated 45° line.
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However, all three chains converged to a relatively small set
of models that accounted for most of the posterior probabil-
ity (Table 7) within the first 10000—-20 000 iterations. Fur-
ther iterations served to more precisely estimate the
posterior probabilities and rankings within this small set. Fi-
nal estimates of posterior probabilities were nonzero for
only 122 of the 2640 models originally considered. Only 7
models had posterior probabilities > 0.02 (Table 7). All
models with positive posterior probabilities contained varia-
bles for wind speed and previous haul-out state (Table 3).
Models that also contained a time-of-day effect accounted
for a combined 97% of the posterior probability (Table 3).
Models that contained a temperature effect accounted for
36% of the posterior probability (Table 3). No other variable
had a marginal posterior probability of more than 0.02
(Table 3).

Taken together, the top seven models accounted for 91%

of the total posterior probability (Table 7). The top three
models (models 1-3, Table 7), accounting for a combined
54% of the posterior probability, all contained variables for
time of day, wind, and previous haul-out state, differing
only slightly in the form of the time-of-day effect. Time-of-
day effects were represented in these models as contrasts be-
tween haul-out probabilities for the evening period, the
morning period, or both of these periods versus all other
times. The next three models (models 4-6, Table 7) ac-
counted for an additional 31% of the posterior probability.
These models were the same as the top three except they
also each included the temperature variable. Taken together,
the top six models suggest that walrus haul-out behavior
may have differed among all three time periods and may
have been related to both wind speed and temperature,
though the temperature relation may have been relatively
weak. The only other model with an individual posterior
probability greater than 0.02 (model 7, Table 7) was the
same as the top three models except it represented the time-
of-day effect as a sine function. The sine function is consis-
tent with a time-of-day effect that cycles among three levels,
but with a posterior probability of only 0.06 for this model,
it is apparently not as effective as the categorical representa-
tions of this effect in the top six models. Therefore, we fo-
cused further analyses on the model (model 5, Table 7) that
distinguished among three time-of-day levels and included
both wind speed and temperature effects.

Examination of parameter traces, Gelman—Rubin statis-
tics, and ratios of MCMC to posterior errors indicated that
MCMC chains for the selected model converged within
3000 iterations. Parameters for the selected model all had
95% credibility intervals that did not include zero (Table 8).
After accounting for fixed effects in the model, the addi-
tional variation in haul-out behavior among different time
points was substantially larger than the variation among dif-
ferent walruses (Table 8).

For comparison with observed haul-out proportions
(Figs. 6 and 7), we calculated averages of posterior mean
predicted haul-out probabilities for each walrus and each be-
havioral interval. Distributions of these predictions were
very similar to observed distributions of haul-out probabil-
ities, with predicted proportions of time spent hauled out
ranging from 0.11 to 0.29 (mean = 0.17) for individual wal-
ruses (Fig. 6), and predicted proportions of walruses hauled
out during a given interval ranging from 0.01 to 0.65
(mean = 0.17, Fig. 7). There was also a reasonably good
correspondence between the predicted probabilities and ob-
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Fig. 5. Estimated durations of bouts of in-water and on-ice activity by walruses (Odobenus rosmarus divergens) as functions of previous
bout duration, in the Bering Sea, April 2004-2006. Plotted values are means with 95% confidence intervals.
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Fig. 6. Frequency histogram of observed and predicted proportions Fig. 7. Frequency histogram of observed and predicted proportions
of time individual walruses (Odobenus rosmarus divergens, n = 43 of tagged walruses (Odobenus rosmarus divergens) hauled out on
walruses) were hauled out on Bering Sea ice during April of the Bering Sea ice at selected points in time, April 2004-2006. The
year in which they were tagged, 2004-2006. Predicted proportions histogram includes only time points with data for at least 10 wal-
are averages of posterior mean predicted haul-out probabilities. ruses (n = 322 behavioral intervals). Predicted proportions are
averages of posterior mean predicted haul-out probabilities.
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Table 7. Posterior probabilities for models of walrus
(Odobenus rosmarus divergens) haul-out probabilities in
the Bering Sea, April 2004-2006.

Posterior
Model  Variables® probability”
1 TOD4, WND, LDRY 0.22
2 TODS, WND, LDRY 0.18
3 TOD3, WND, LDRY 0.14
4 TOD3, WND, TMP, LDRY 0.12
5 TODS, WND, TMP, LDRY 0.10
6 TOD4, WND, TMP, LDRY 0.09
7 TOD2, WND, LDRY 0.06

Note: Table includes all considered models with posterior
probabilities > 0.02.

“Variables included in addition to the intercept and random
effects, as described in the text. See text and Table 3 for
description of variables.

"Proportion of MCMC model selection iterations that included

the specified set of variables, based on the final 100 000 iterations
from three separate chains of 200 000 iterations each.

served proportions for individual behavioral intervals
(Fig. 8).

After integrating over the random effects of time and wal-
rus in this model, previous haul-out state was the effect most
strongly related to current haul-out state (Figs. 9, 10, 11). At
mean values for temperature and wind speed, posterior mean
haul-out probabilities were from 0.63 to 0.75 higher for wal-
ruses that were hauled out during the previous interval than
for walruses that were in the water during the previous inter-
val (Fig. 9). Likewise, when other factors were held con-
stant, haul-out probabilities ranged from 0.64 to 0.81 higher
over the range of temperatures (Fig. 10) and from 0.31 to
0.77 higher over the range of wind speeds (Fig. 11) for wal-
ruses that were hauled out during the previous interval.
Credibility intervals for haul-out probabilities did not over-
lap in any of the cases that differed only with respect to pre-
vious haul-out state (Figs. 9, 10, 11).

Haul-out probabilities increased with temperature
(Fig. 10) and decreased with wind speed (Fig. 11). Holding
other variables constant, differences in posterior mean haul-
out probabilities were larger over the range of observed
wind speeds (difference = 0.58 for walruses previously on
ice, 0.12 for walruses previously in water, Fig. 11) than
over the range of observed temperatures (difference = 0.18
for walruses previously on ice, 0.01 for walruses previously
in water, Fig. 10). Credibility intervals for all of these pre-
dicted haul-out probabilities broadly overlapped, however
(Figs. 10 and 11). For given values of temperature and
wind, haul-out probabilities increased from morning to eve-
ning, and differences in posterior means (evening — morn-
ing = 0.16 for walruses previously on ice, 0.04 for walruses
previously in water, Fig. 9) were about the same as the cor-
responding differences attributable to temperature effects.
Credibility intervals for these probabilities also broadly
overlapped (Fig. 9).

Integrating over previous haul-out state as well as the ran-
dom effects of time and walrus provided estimates of mean
haul-out probabilities that ranged from 0.04 to 0.31, follow-
ing the same general patterns noted above (Figs. 12 and 13).
Credibility intervals for these estimates were considerably
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larger than for the estimates that depended on previous
haul-out state. Lengths of 95% credibility intervals for the
haul-out probabilities presented in Figs. 12 and 13 ranged
from 0.36 to 0.92, but posterior distributions were bimodal,
with most of the probability concentrated around the two
modes (Figs. S2 and S3).2

Discussion

Our analysis provides the first fully quantitative character-
ization of walrus haul-out behavior on Bering Sea ice. Over-
all, walruses spent a relatively small proportion of their time
hauled out on sea ice, averaging about 83% of their time in
the water during April. This is within the range of monthly
values observed for a single male Atlantic walrus (Odobenus
rosmarus rosmarus (L., 1758)) in the Greenland Sea that
spent 70%—87% of its time in water during October—January
(Born et al. 2005). The study of this walrus by Born et al.
(2005) provides the only other published telemetry data on
time in water for walruses in sea ice habitat. However, the
behavioral patterns observed by Born et al. (2005) and in
our study are consistent with July—September observations
at terrestrial haul-out sites where walruses also spent most
of their time (65%-85%) in the water (Born and Knutsen
1997; Gjertz et al. 2001; Jay et al. 2001; Born et al. 2005;
Acquarone et al. 2006; Lydersen et al. 2008).

Individual walruses in our study spent an average of 46 h
per bout in water and an average of 9 h per bout on ice, but
durations of on-ice bouts tended to increase with durations
of preceding in-water bouts. Jay et al. (2001) also found
that durations of haul-out bouts at terrestrial sites in Bristol
Bay, Alaska, increased with durations of preceding in-water
bouts. We did not detect any differences in bout durations
related to walrus sex or year of tagging.

The average durations we observed for both in-water and
on-ice bouts were considerably shorter than those that have
been observed for walruses strictly associated with terrestrial
haul-out sites, where average in-water durations have ranged
from 56 to 143 h and on-land durations have ranged from 20
to 38 h per bout (Born and Knutsen 1997; Gjertz et al. 2001;
Jay et al. 2001; Lydersen et al. 2008). Our average value for
on-ice bouts is comparable to the average of 11 h per on-ice
bout observed by Born and Knutsen (1997) for walruses
when they hauled out on sea ice during a year when ice
was present near a terrestrial haul-out site that they were
also using. Likewise, the average duration we observed for
in-water bouts is comparable to the 38 h per in-water inter-
val observed by Born and Knutsen (1997) that same year.
There are no previously published data on durations of
haul-out bouts for walruses without access to terrestrial
haul-out sites.

Even though durations of individual bouts of in-water ac-
tivity tend to be shorter for walruses in sea ice habitat, the
overall portion of time spent in water appears to be about
the same for walruses using either sea ice or terrestrial
haul-out sites. Differences in durations of in-water activity
periods associated with use of these sites may be related to
differences in distances to foraging areas (Gjertz et al.
2001). Walruses may be able to make shorter and more fre-
quent foraging trips when the trips originate from sea ice
rather than terrestrial haul-out sites.
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Table 8. Parameter estimates for a model of walrus (Odobenus rosmarus divergens) haul-
out probabilities in the Bering Sea, April 2004-2006.

95% credibility interval

Parameter Description” Mean Lower limit ~ Upper limit
Bo Intercept -3.29 -3.47 -3.10

Bi Coefficient for TODS = evening 0.48 0.15 0.82

B2 Coefficient for TODS = morning -0.42 -0.70 -0.15

B3 Coefficient for TMP 0.16 0.05 0.27

Ba Coefficient for WND -0.53 -0.65 -0.41

Bs Coefficient for LDRY 4.45 4.23 4.67

o% Variance for random time effect 0.437 0.235 0.654

‘72) Variance for random walrus effect 0.007 0.001 0.030

“See text and Table 3 for descriptions of variables.

Fig. 8. Comparison of observed and predicted proportions of tagged
walruses (Odobenus rosmarus divergens) hauled out on Bering Sea
ice at selected points in time, April 2004-2006. Each point repre-
sents a behavioral interval with data for at least 10 walruses (n =
322 intervals). Predicted proportions are averages of posterior mean
predicted haul-out probabilities. Predictions that exactly match ob-
servations would lie on the indicated 45° line.
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The probability of walruses being hauled out at any given
time was related to wind speed, temperature, and time of
day, though the relations were weak relative to relations
with other, apparently random, factors. Credibility intervals
for parameters related to wind, temperature, and time-of-
day effects did not include zero, indicating that these factors
were related to haul-out behavior. However, the wide, over-
lapping credibility intervals for predicted haul-out probabil-
ities indicate there was also a substantial amount of
variability in the relations. Variability around the 45° line in
Fig. 8 indicates that there was substantial variability even
beyond what could be accounted for by random time and
walrus effects.

Wind speed was more strongly related than temperature
or time of day to haul-out probability. This was evidenced

by its inclusion in 100% of the models with positive poste-
rior probability and the relative magnitudes of differences in
haul-out probabilities over the range of wind speed values.
Temperature and time-of-day effects were both included in
most models with positive posterior probability, but differ-
ences in haul-out probabilities associated with these varia-
bles were not as large as differences associated with
observed variation in wind speed. We found no evidence
for any relations of haul-out probabilities to barometric pres-
sure, sex, or year that could not be more parsimoniously
characterized in terms of the other weather and time-of-day
variables.

The influence of weather on walrus haul-out behavior is
likely to be due, at least partly, to thermoregulatory require-
ments (Wells et al. 1999). Field biologists and hunters have
noted that walruses generally avoid hauling out during peri-
ods of intense cold or high wind (Fay and Ray 1968; Mans-
field and St. Aubin 1991; Garlich-Miller and Jay 2000).
Haul-out behavior of Atlantic walruses at terrestrial haul-
out sites has been quantitatively related to wind (Salter
1979; Born and Knutsen 1997), temperature (Salter 1979),
and precipitation (Salter 1979; Born and Knutsen 1997). Ly-
dersen et al. (2008) did not detect any relation between wind
or temperature changes and haul-out behavior of male wal-
ruses using terrestrial haul-out sites in Svalbard, but the
range of weather conditions experienced by those animals
appears to have been relatively narrow in comparison with
the ranges observed during other studies.

Fay and Ray (1968) observed that Pacific walruses in the
Bering Sea tended to haul out mostly during the daytime,
with peak numbers hauled out during early morning and
early afternoon. We also found that walruses tended to haul
out mostly during the day, but with haul-out probabilities in-
creasing from their lowest point in late morning to their
highest point in the early evening. Some studies of Atlantic
walruses have found relations between haul-out behavior
and time of day, with haul-out numbers highest during the
day (Salter 1979) or in the afternoon and evening (Born and
Knutsen 1997), while others have not found any relation
(Mansfield and St. Aubin 1991; Lydersen et al. 2008). De-
tection of diel patterns in walrus haul-out behavior is com-
plicated by correlations with daily temperature patterns
(Born and Knutsen 1997) and by the fact that walruses often
haul out for periods of up to several days before they return
to the water (Gjertz et al. 2001; Jay et al. 2001). Also, diel
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Fig. 9. Estimated probabilities of Pacific walruses (Odobenus rosmarus divergens) being hauled out on sea ice in April, as functions of time
of day and previous haul-out state (squares, previously in water; circles, previously hauled out). Plotted values are posterior means with
95% credibility intervals. Probabilities are estimated at mean values of temperature and wind speed, integrating over random effects due to
time and walrus.
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Fig. 10. Estimated probabilities of Pacific walruses (Odobenus rosmarus divergens) being hauled out on sea ice in April, as functions of air
temperature and previous haul-out state. Temperatures span the range of observed values in the April 2004-2006 data. Plotted values are
posterior means with 95% credibility intervals. Probabilities are estimated for the median time of day (i.e., other than morning or evening)
and the mean value of wind speed, integrating over random effects due to time and walrus.
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Fig. 11. Estimated probabilities of Pacific walruses (Odobenus rosmarus divergens) being hauled out on sea ice in April, as functions of
wind speed and previous haul-out state. Wind speeds span the range of observed values in the April 2004-2006 data. Plotted values are
posterior means with 95% credibility intervals. Probabilities are estimated for the median time of day (i.e., other than morning or evening)
and the mean value of temperature, integrating over random effects due to time and walrus.
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patterns may vary seasonally in response to such factors as cient size and thickness to support their weight for hauling

day length (Lydersen et al. 2008). out. Topography of sea ice likely influences microclimatic

Walrus distribution is related to the seasonal distribution conditions and may affect which floes are selected for haul-
of sea ice (Fay 1982) and to ice characteristics such as cov- ing out. Given that walruses are in an area with suitable ice,
erage, floe size, and thickness (Wartzok and Ray 1980; however, it is not known whether characteristics of that ice
Simpkins et al. 2003a). Walruses must select floes of suffi- further influence the probability of hauling out. Our model
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Fig. 12. Estimated probabilities of Pacific walruses (Odobenus rosmarus divergens) being hauled out on sea ice in April, as functions of air
temperature and time of day. Plotted values are posterior means. Probabilities are estimated at the mean value of wind speed, integrating

over previous haul-out state and random effects due to time and walrus.
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Fig. 13. Estimated probabilities of Pacific walruses (Odobenus rosmarus divergens) being hauled out on sea ice in April, as functions of
wind speed and time of day. Plotted values are posterior means. Probabilities are estimated at the mean value of temperature, integrating

over previous haul-out state and random effects due to time and walrus.
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was based on 3 years of telemetry data covering a range of
ice conditions over a large portion of the Bering Sea. Within
this range, any effects of ice characteristics on haul-out
probabilities are accounted for as a part of the random varia-
tion in the model and will result in appropriately increased
variability of posterior distributions. Future research should
consider the potential for explicitly using remotely sensed
data on ice characteristics in models of walrus haul-out be-
havior.

Previous haul-out state had the strongest relation to haul-
out probability of any of the variables we considered. The
effect of this variable was clearly evident in the magnitudes
of associated differences in haul-out probabilities and the
non-overlapping credibility intervals. Part of this effect may
be due to physiological, social, or environmental conditions
(not captured by other variables we considered) that are re-
lated to haul-out behavior and tend to change slowly relative
to the 3 h time steps in our model. The result is that individ-
ual haul-out or in-water bouts tended to be longer than 3 h
(Fig. 2), so the observations for individual walruses were
strongly autocorrelated.

Although previous haul-out state is a strong predictor of
current haul-out state, it is not useful for estimating haul-
out probabilities for walruses with unknown haul-out histor-
ies. Estimates that are not conditioned on previous haul-out
state (e.g., Figs. 12 and 13) give a more useful characteriza-
tion of haul-out probabilities because they apply to the

population as a whole. Posterior distributions for these un-
conditional probabilities tend to be bimodal, with probability
concentrated in areas around the modes rather than the mean
(Figs. S2 and S3). The modes correspond to the two possible
values for previous haul-out state.

Our modeling approach illustrates how a Bayesian frame-
work can be used to combine imputation with simultaneous
model selection for a hierarchical model. Our specific ap-
proach can be applied directly to studies of other ice-
associated pinnipeds by using the same types of telemetry
and weather data, but the general approach also has
potential for use in any application that develops models
as functions of incomplete environmental data. In some
applications, it might be desirable to also incorporate
model averaging (Burnham and Anderson 2002), rather
than basing inferences on a single selected model. With
our approach, the estimated posterior probabilities for each
model could be used directly as a basis for averaging the
estimates from those models.

Pinniped populations are typically monitored based on
counts of hauled-out individuals, but these counts must be
adjusted or standardized to account for the portion of the
population that was in the water when the counts were
made (Eberhardt et al. 1979; Green et al. 1995). For estima-
tion of population trends, this issue has usually been ad-
dressed by either standardizing survey conditions to
minimize differences in haul-out proportions (Jacobs and
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Terhune 2000; Simpkins et al. 2003b) or adjusting for dif-
ferences in conditions by incorporating appropriate covari-
ates in models of the counts (Calkins et al. 1999; Mathews
and Pendleton 2006). Estimation of population size gener-
ally requires explicit estimates of the proportion of the pop-
ulation hauled out during the survey. Design-based estimates
of haul-out proportions can be obtained directly from a sam-
ple of individuals during the survey (Thompson et al. 1997,
Huber et al. 2001). Model-based estimates can be obtained
as functions of covariates that are measured during a survey
(Bengtson et al. 2005; Krafft et al. 2006; Sharples et al.
2009). Model-based estimation of haul-out proportions be-
comes necessary when it is not practical to monitor the
haul-out behavior of a representative sample of the target
population during the survey.

Our unconditional model can be used along with data
from an April survey of walruses on Bering Sea ice to esti-
mate the portion of the population that was in the water dur-
ing the survey. Posterior distributions of the haul-out
probabilities associated with each walrus group detected on
the ice in the survey can be estimated using weather condi-
tions from the nearest NARR grid point. Dividing the esti-
mated size of each detected group by the associated haul-
out probability and summing over the detected groups on
each surveyed transect gives a Horvitz—Thompson expansion
(Thompson 2002) that accounts for groups that could not be
detected because they were in the water. Variability associ-
ated with estimation of the haul-out probabilities can be ac-
counted for by resampling from their estimated posterior
distributions as a part of the overall bootstrap variance esti-
mation procedure (Udevitz et al. 2008). Of course, this use
of the model assumes haul-out behavior of the tagged walrus
sample is representative of walrus behavior throughout the
survey area, including areas in which there were no tagged
walruses. The extensive area ranged over by the tagged wal-
rus sample (Fig. 1) and the apparent lack of relations be-
tween haul-out behavior and sex or year (confounded with
region) suggest that this assumption is likely to be reason-
able. However, we recommend future validation of the
model with additional data from areas of the Bering Sea not
sampled in this study, if possible.

Our results indicate that at any given time during April,
we can expect a substantial portion, if not the majority, of
the Pacific walrus population to be in the water rather than
hauled out on the ice. Therefore, it will be essential to ac-
count for walruses in the water to obtain a reasonable esti-
mate of the total population size during an April survey.
Our model indicates that estimates of the portion of the wal-
rus population in the water will be only weakly dependent
on weather conditions and time of day relative to other fac-
tors considered as random by the model. However, condi-
tions in the Bering Sea can change dramatically year to
year, and even day to day, so accounting for effects of
weather and time of day could be important. Because of sea-
sonal changes in walrus behavior (Fay 1982), we would not
recommend this model for use outside the April time period
for which it was developed. In addition to its survey applica-
tion though, the model also provides an important step in
understanding relations of environmental factors to haul-out
behavior of Pacific walruses on sea ice. This understanding
will provide the necessary basis for future studies of how

Can. J. Zool. Vol. 87, 2009

walruses use their sea ice habitats and for assessing potential
changes in their behavior relative to projected changes in
climate and sea ice (Overland and Wang 2007).

Acknowledgements

We appreciate the work of M. Webber, S. Speckman, and
L. Quakenbush, who were instrumental in procuring ship
and aerial reconnaissance contracts for our three years of
field work. M. Apatiki, Y. Bukhtiyarov, M. Cody, A. Gra-
chev, E. Gurarie, C. Hamilton, A. Jensen, M. Jensen, S. Ka-
zlowski, A. Kochnev, N. Kutrukhin, L. Quakenbush, E.
Rypkhirgin, J. Snyder, and G. Sheffield ably assisted with
walrus tagging. Aerial reconnaissance was provided by S.
Speckman, M. Webber, J. Trent, and pilots with Commander
Northwest. Crews of the P/V Stimson and R/V Magadan
provided safe and professional working environments and
enthusiastic support. The Eskimo Walrus Commission facili-
tated communication with Alaska Native communities and
helped obtain field assistance. K. Oakley, T. McDonald, M.
Simpkins, B. Raymond, and an anonymous reviewer pro-
vided helpful comments on earlier versions of the manu-
script. Funding and administrative support was provided by
the US Fish and Wildlife Service, Marine Mammals Man-
agement Office, Anchorage, and the US Geological Survey,
Alaska Science Center. Additional funding was provided by
the North Pacific Research Board to complete analyses. Any
mention of trade names is for descriptive purposes only and
does not constitute endorsement by the federal government.

References

Acquarone, M., Born, E.W., and Speakman, J.R. 2006. Field meta-
bolic rates of walrus (Odobenus rosmarus) measured by the dou-
bly labeled water method. Aquat. Mamm. 32(3): 363-369.
doi:10.1578/AM.32.3.2006.363.

Bengtson, J.L., and Cameron, M.F. 2004. Seasonal haulout patterns
of crabeater seals (Lobodon carcinophaga). Polar Biol. 27(6):
344-349. doi:10.1007/s00300-004-0597-1.

Bengtson, J.L., Hiruki-Raring, L.M., Simpkins, M.A., and Boveng,
P.L. 2005. Ringed and bearded seal densities in the eastern
Chukchi Sea, 1999-2000. Polar Biol. 28(11): 833-845. doi:10.
1007/s00300-005-0009-1.

Born, E-W., and Knutsen, L.@. 1997. Haul-out and diving activity
of male Atlantic walruses (Odobenus rosmarus rosmarus) in NE
Greenland. J. Zool. (Lond.), 243(2): 381-396. doi:10.1111/j.
1469-7998.1997.tb02789.x.

Born, E.-W., Acquarone, M., Knutsen, L.@., and Toudal, L. 2005.
Homing behaviour in an Atlantic walrus (Odobenus rosmarus
rosmarus). Aquat. Mamm. 31(1): 23-33. doi:10.1578/AM.31.1.
2005.23.

Brooks, S.P., and Gelman, A. 1998. Alternative methods for moni-
toring convergence of iterative simulations. J. Comput. Graph.
Statist. 7(4): 434-455. doi:10.2307/1390675.

Burek, K.A., Gulland, FM.D., and O’Hara, T.M. 2008. Effects of
climate change on Arctic marine mammal health. Ecol. Appl.
18(2): S126-S134. doi:10.1890/06-0553.1. PMID:18494366.

Burn, D.M., Webber, M.A., and Udevitz, M.S. 2006. Application
of airborne thermal imagery to surveys of Pacific walrus. Wildl.
Soc. Bull.  34(1): 51-58. doi:10.2193/0091-7648(2006)
34[51:AOATIT]2.0.CO;2.

Burnham, K.P., and Anderson, D.R. 2002. Model selection and
multimodel inference, second edition. Springer, New York.

Published by NRC Research Press



Udevitz et al.

Burns, J.J., Shapiro, L.H., and Fay, F.H. 1981. Ice as marine mam-
mal habitat in the Bering Sea. In The Eastern Bering Sea Shelf:
oceanography and resources. Edited by D.W. Hood and J.A.
Calder. University of Washington Press, Seattle. pp. 781-797.

Calkins, D.G., McAllister, D.C., Pitcher, K.W., and Pendleton,
G.W. 1999. Steller sea lion status and trend in southeast Alaska:
1979-1997. Mar. Mamm. Sci. 15(2): 462-477. doi:10.1111/j.
1748-7692.1999.tb00813.x.

Collecte Localisation Satellites. 2007. Argos user’s manual. Col-
lecte Localisation Satellites, Ramonville-Saint-Agne, France.
Dellaportas, P., Forster, J.J., and Ntzoufras, I. 2002. On Bayesian
model and variable selection using MCMC. Stat. Comput.

12(1): 27-36. doi:10.1023/A:1013164120801.

Douglas, D.C. 2006. The Douglas Argos-Filter Algorithm [online].
Available from http://alaska.usgs.gov/science/biology/spatial/
douglas.html [accessed 1 April 2009].

Eberhardt, L.L., Chapman, D.G., and Gilbert, J.R. 1979. A review
of marine mammal census methods. Wildl. Monogr. 63: 1-46.
Fay, F.H. 1982. Ecology and biology of the Pacific walrus, Odobe-

nus rosmarus divergens Illiger. N. Am. Fauna, 74: 1-279.

Fay, F.H., and Ray, G.C. 1968. Influence of climate on the distri-
bution of walruses, Odobenus rosmarus (Linnaeus). 1. Evidence
from thermoregulatory behavior. Zoologica, 53: 1-14.

Fischbach, A.S., Jay, C.V., Jackson, J.V., Andersen, L.W., Sage,
G.K., and Talbot, S.L. 2008. Molecular method for determining
sex of walruses. J. Wildl. Manag. 72(8): 1808-1812. doi:10.
2193/2007-413.

Frost, K.J., Lowry, L.F., Pendleton, G., and Nute, H.R. 2004. Fac-
tors affecting the observed densities of ringed seals, Phoca his-
pida, in the Alaskan Beaufort Sea, 1996-99. Arctic, 57: 115—
128.

Garlich-Miller, J., and Jay, C.V. 2000. Proceedings of a Workshop
Concerning Walrus Survey Methods. U.S. Fish and Wildlife
Service, Region 7, Marine Mammals Management, Technical
Report 00-2, Anchorage, Alaska.

Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B. 1997. Baye-
sian data analysis. Chapman and Hall, New York.

Gilbert, J.R. 1999. Review of previous Pacific walrus surveys to
develop improved survey designs. /n Marine mammal survey
and assessment methods. Edited by G.W. Garner, S.C. Amstrup,
J.L. Laake, B.F.J. Manly, L.L.. McDonald, and D.G. Robertson.
A.A. Balkema, Brookfield, Vt. pp. 75-84.

Gjertz, ., Griffiths, D., Krafft, B.A., Lydersen, C., and Wiig, @.
2001. Diving and haul-out patterns of walruses Odobenus ros-
marus on Svalbard. Polar Biol. 24(5): 314-319. doi:10.1007/
s003000000211.

Green, K., Burton, H.R., Wong, V., McFarlane, R.A., Flaherty,
A.A., Pahl, B.C., and Haigh, S.A. 1995. Difficulties in assessing
population status of ice seals. Wildl. Res. 22(2): 193-199.
doi:10.1071/WR9950193.

Hayward, J.L., Henson, S.M., Logan, CJ., Parris, C.R., Meyer,
M.W., and Dennis, B. 2005. Predicting numbers of hauled-out
harbour seals: a mathematical model. J. Appl. Ecol. 42(1): 108—
117. doi:10.1111/.1365-2664.2005.00999..x.

Huber, H.R., Jeffries, S.J., Brown, R.F., DeLong, R.L., and Van-
Blaricom, G. 2001. Correcting aerial survey counts of harbor
seals (Phoca vitulina richardsi) in Washington and Oregon.
Mar. Mamm. Sci. 17(2): 276-293. doi:10.1111/j.1748-7692.
2001.tb01271.x.

Ibrahim, J.G., Chen, M.-H., Lipsitz, S.R., and Herring, A.H. 2005.
Missing-data methods for generalized linear models: a compre-
hensive review. J. Am. Stat. Assoc. 100(469): 332-346. doi:10.
1198/016214504000001844.

1127

Jacobs, S.R., and Terhune, J.M. 2000. Harbor seal (Phoca vitulina)
numbers along the New Brunswick coast of the Bay of Fundy in
autumn in relation to aquaculture. Northeast. Nat. 7: 289-296.

Jay, C.V., Farley, S.D., and Garner, G.W. 2001. Summer diving be-
havior of male walruses in Bristol Bay, Alaska. Mar. Mamm.
Sci. 17(3): 617-631. doi:10.1111/j.1748-7692.2001.tb01008 .x.

Jay, C.V., Heide-Jgrgensen, M.P., Fischbach, A.S., Jensen, M.V.,
Tessler, D.F., and Jensen, A.V. 2006. Comparison of remotely
deployed satellite radio transmitters on walruses. Mar. Mamm.
Sci. 22: 226-236.

Krafft, B.A., Kovacs, K.M., Andersen, M., Aars, J., Lydersen, C.,
Ergon, T., and Haug, T. 2006. Abundance of ringed seals (Pusa
hispida) in the fjords of Spitsbergen, Svalbard, during the peak
molting period. Mar. Mamm. Sci. 22(2): 394-412. doi:10.1111/
j-1748-7692.2006.00035 x.

Littell, R.C., Milliken, G.A., Wolfinger, R.D., and Schabenberger,
0. 2006. SAS for mixed models. SAS Press, Cary, N.C.

Lydersen, C., Aars, J., and Kovacs, K.M. 2008. Estimating the
number of walruses in Svalbard from aerial surveys and beha-
vioural data from satellite telemetry. Arctic, 61: 119-128.

Mansfield, A.W., and St. Aubin, D.J. 1991. Distribution and abun-
dance of the Atlantic walrus, Odobenus rosmarus rosmarus, in
the Southampton Island — Coats Island region of northern Hud-
son Bay. Can. Field Nat. 105: 95-100.

Mathews, E.A., and Pendleton, G.W. 2006. Declines in harbor seal
(Phoca vitulina) numbers in Glacier Bay National Park, Alaska,
1992-2002. Mar. Mamm. Sci. 22: 167-189.

McCullagh, P., and Nelder, J.A. 1999. Generalized linear models.
2nd ed. Chapman and Hall, Boca Raton, Fla.

Mesinger, F., DiMego, G., Kalnay, E., Mitchell, K., Shafran, P.C.,
Ebisuzaki, W., Jovic, D., Woollen, J., Rogers, E., Berbery, E.H.,
Ek, M.B., Fan, Y., Grumbine, R., Higgins, W., Li, H., Lin, Y.,
Manikin, G., Parrish, D., and Shi, W. 2006. North American Re-
gional Reanalysis. Bull. Am. Meteorol. Soc. 87(3): 343-360.
doi:10.1175/BAMS-87-3-343.

Moulton, V.D., Richardson, W.J., McDonald, T.L., Elliott, R.E.,
and Williams, M.T. 2002. Factors influencing local abundance
and haulout behavior of ringed seals (Phoca hispida) on landfast
ice of the Alaskan Beaufort Sea. Can. J. Zool. 80(11): 1900-
1917. doi:10.1139/z02-173.

Ntzoufras, I. 2002. Gibbs variable selection using BUGS. J. Stat.
Softw. 7: 1-19.

Overland, J.E., and Wang, M. 2007. Future regional Arctic sea ice
declines. Geophys. Res. Lett. 34(17): L17705. doi:10.1029/
2007GL030808.

Peterson, W.W., and Brown, D.T. 1961. Cyclic codes for error de-
tection. Proc. Inst. Radio Eng. 49: 228-235.

Rausch, R.L., George, J.C., and Brower, H.K. 2007. Effect of cli-
matic warming on the Pacific walrus, and potential modification
of its helminth fauna. J. Parasitol. 93(5): 1247-1251. doi:10.
1645/GE-3583CC.1. PMID:18163371.

Ray, C.G., McCormick-Ray, J., Berg, P., and Epstein, H.E. 2006.
Pacific walrus: benthic bioturbator of Beringia. J. Exp. Mar.
Biol. Ecol. 330(1): 403-419. doi:10.1016/j.jembe.2005.12.043.

Reder, S., Lydersen, C., Arnold, W., and Kovacs, K.M. 2004.
Haulout behaviour of high Arctic harbour seals (Phoca vitulina
vitulina) in Svalbard, Norway. Polar Biol. 27(1): 6-16. doi:10.
1007/s00300-003-0557-1.

Salter, R.E. 1979. Site utilization, activity budgets, and disturbance
responses of Atlantic walruses during terrestrial haul-out. Can. J.
Zool. 57(6): 1169-1180. doi:10.1139/279-149.

Sharples, R.J., Mackenzie, M.L., and Hammond, P.S. 2009. Esti-
mating seasonal abundance of a central place forager using

Published by NRC Research Press



1128

counts and telemetry data. Mar. Ecol. Prog. Ser. 378: 289-298.
doi:10.3354/meps07827.

Simpkins, M.A., Hiruki-Raring, L.M., Sheffield, G., Grebmeier,
J.M., and Bengtson, J.L. 2003a. Habitat selection by ice-
associated pinnipeds near St. Lawrence Island, Alaska in
March 2001. Polar Biol. 26(9): 577-586. doi:10.1007/
s00300-003-0527-7.

Simpkins, M.A., Withrow, D.E., Cesarone, J.C., and Boveng, P.L.
2003b. Stability in the proportion of harbor seals hauled out un-
der locally ideal conditions. Mar. Mamm. Sci. 19(4): 791-805.
doi:10.1111/5.1748-7692.2003.tb01130.x.

Southwell, C. 2005. Optimising the timing of visual surveys of cra-
beater seal abundance: haulout behaviour as a consideration.
Wildl. Res. 32(4): 333-338. doi:10.1071/WR04085.

Spiegelhalter, D.J., Thomas, A., Best, N.G., and Lund, D. 2003.
WinBUGS user manual. Version 1.4. MRC Biostatistics Unit,
Cambridge, U.K.

Thompson, S.K. 2002. Sampling. 2nd ed. John Wiley and Sons,
New York.

Can. J. Zool. Vol. 87, 2009

Thompson, P.M., Tollit, D.J., Wood, D., Corpe, H.M., Hammond,
P.S., and MacKay, A. 1997. Estimating harbour seal abundance
and status in an estuarine habitat in north-east Scotland. J. Appl.
Ecol. 34(1): 43-52. doi:10.2307/2404846.

Udevitz, M.S., Burn, D.M., and Webber, M.A. 2008. Estimation of
walrus populations on sea ice with infrared imagery and aerial
photography. Mar. Mamm. Sci. 24(1): 57-70. doi:10.1111/j.
1748-7692.2007.00169.x.

Wartzok, D., and Ray, G.C. 1980. The hauling-out behavior of the
Pacific walrus. U.S. Department of Commerce, Marine Mammal
Commission, Final Report MMC-75/15, Washington, D.C.

Wells, R.S., Boness, D.J., and Rathbun, G.B. 1999. Behavior. In
Biology of marine mammals. Edited by J.E. Reynolds, III and
S.A. Rommel. Smithsonian Institution Press, Washington, D.C.
pp. 324-422.

Yang, X., Belin, T.R., and Boscardin, W.J. 2005. Imputation and
variable selection in linear regression models with missing cov-
ariates. Biometrics, 61(2): 498-506. doi:10.1111/j.1541-0420.
2005.00317.x. PMID:16011697.

Published by NRC Research Press




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Sheetfed Coated v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /RelativeColorimetric
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 99
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 225
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 225
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


