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Background

Descriptions of a few major networks

Multipurpose networks

Mission supportive networks with more restrictive focus (initially)
Specialty networks

General thoughts
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NWS Coop sites with enough data for Temperature Summary ~5yrs
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Stations with 50 Plus Years of Data
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Courtesy Brian Fuchs, National Drought Mitigation Center



Stations with 50 Plus Years of Data Buffers

Within 20 miles of a station
Within 30 miles of a station
- Within 50 miles of a station
- Within 75 miles of a station
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Remote Automated Weather Station Network (RAWS) - November 2002

¢ Desert Research Institute ng
Reno, Nevada
] 5

Y

Now approx 750 sites, all weather, reliable,
good track record, T, P, SD and SWE, now
mostly hourly, resolution 0.1 inch, short
records, no sites yet set aside as
benchmark references. Snowfall Telemetry
Closest thing we have SNOTEL

to a Westwide hydro 700 Active
network.

Remote Automated Weather Stations
RAWS
1100 Active

700 Inactive

Update 2009: Now about 1600 sites
meeting FPA (Fire Program Analysis)
standards, approx 2000 live, 2400 total.

Hourly met obs (T, P, RH, WD, WS, Gst,
Solar, BP, Tfuel), except not all-weather
precip gauges, usually no power.

EEE TT1
EmamananmaREEy
= l‘—l.a ---!--"“u"‘\lg’h_‘v_—} ag

o I ) v <\ LM

[ T MRS AT

-, Westem Regional Climate Center

1" Deseit Research Institute
Reno, Nevada

ENNEINY







Mather RAWS 9268 ft

Nat Park

In

Great Bas






Oct 15, 2007

SNOTEL Locations

Alaska
SNOTEL Snow Water Equivalent {SWE)
% of Normal

Oct 15, 2007

Current SWE
* of Normal
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Current Snow

Provisional Data

Water Equiv St
Ranking :
Percentile
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® wettest 5% MNRCS National Water and C limate Center
SNOTEL Network (Sites with 20 or more years)
Provisional Data - Subject to Revision

@ snow free
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Transect or cluster networks to help
define gradients or fine spatial structure
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Elevation Transect Across Owens Valley south of Independence CA
Vertical Exaggeration Approximately 4 X
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TREX — Terrain Induced Rotors Experiment
Independence CA Owens Valley
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TREX — Terrain Induced Rotors Experiment
Independence CA Owens Valley
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Sierra Rotors / TREX Station Elevation Profiles by Transect.
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TREX Site 05 Looking South
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TREX Site 05 Looking East
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Wind

atationn mph  Deg  mph

SR#L
SR#2
SR#3
SR #4
SR.#5
SR #6
SR#7
SR#3
SR.#0
b #10
x4 )
aE H#12
AR H#13
b #14
b #15
b #la

102
2.4
2.5
9.1
2.5
2.4
Th
2.3
a3
2.2
2.1
2.1
2.9
2.5
2.3
2.l

Copyght: Western Eegional Climate Center - Desert Research Institute - Reno, Newvada,

431
240
265
254
287
276
220
19
216
Zdad
281
283
185
1=0
213
243

548
4s.1
449
46 .4
41.3
342
34.5
357
36.1
39.0
3.2
353
398
355
34.4
AN

Draily Sununaty for

Baro.

i Hg.

2424
2499
4355
2588
2595
2574
2469
23205
2366
25385
2594
2596
2509
24269
25297
2597

€ 2 ||| June 16, 2005 [|[ 5o
Air Temperature Humidity Dew Wet
V.Dir. Ifax. Mean DIax Mitn Meatn Iiax Min Point Bulb Press
Deg. F. Percent Deg F.
2.7 ED9 B0 1R 30010 2 &
744 34T 394 14 da 10 43 48
744 B82S L 1T 349 22 40
734 %01 | 340 | 19 44 Z 27 50
720 915|475 | 23 3509 e 49
755 900|597 | 16 59 2550
09 B33 370 17 289 23 4B
4T BaY 4 17 il 9 24 49
7220 297 394 14 B9 24 50
747 904|355 | 17 40 9 26 50
745 90| 431 | 21 ;o Z e 49
732 919487 | 20 45 Z 2749
732 BAR 395 15 59 224 4B
Jal BRI 620 | 1a LT 24 50
7260 915|485 | 2l 4 9 da 50
745 920494 | 1E 44 Z 26 50

123
122
122
122
122
122
122
122
12.0
122
122
122
12.1
122
122

Battetry Voltage
Iieann Mlax Liin
volts
128 1312
147 134
147 133
127 131
126 1312
127 1312
127 1312
147 134
126 131
127 131
127 133
126 1312
126 1312
147 134
127 1534
127 132

12.1

Diata are subject to further review and editing. Please refer any questions to the Western Regional Climate Center.
®1ly=1 calfem®= 41855 Ifem® = 3 6255 BTU/M® = 01163 KW/ m®
* Incomplete data. Listed data compiled from avalable data.
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Temperature (F)
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Sierra Rotors TREX Network Sites 13-16
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July Temperature (F)

Independence CA NWS Coop Station.
Average July Max / Mean / Min Temperature.
1971-2004. Units: Degrees F

0
— 1Ave Max 98.82
B :Std Dev 3.14
100 © Max | 71-04 Trend +3.83
90 [
: :Ave Mean 81.87
— Mean 1Std Dev 2.69
80 — 171-04 Trend +3.01
70 [ .
- Min A
B |Ave Mean 64.93
L | Std Dev 2.68
- 171-04 Trend +2.19
60 [ |
50 N l I I l I l I I l I l I I l I

1970 1975 1980 1985 1990 1995 2000 2005

Western Regional
Year Climate Center
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ECCM Strategy as of
April 2005

Special California CRN

stations appear

to be too

expensive for ECCM

One or two transects from
the near shore ocean to
far western Great Basin.
Augment selected Sierra

mountaintops.
Leverage other current

and planned projects.

— Existing or
expected

R
C

" national CRN

Potential New

S — Additional sites of

California Climate
Monitoring Site
Augmentation Site
opportunity

A — Potential



Whale Point (400 ft) and Highlands Peak (2500 ft), Big Sur. 2 miles apart.
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MaPng New lerram
Climate C]’langc and America’s West

Anticipating Challenges to Western Mountain Ecosystems and Resources

The Consortium for Integrah:d C]imate Ff_e5e.an:[‘1 in
Western Mountains
(CIRMQOILINT)

July 2006






NOAA Hydrometeorological Test Bed -- North Fork American River
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Photo: Dave Simeral
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Hot Plate v
Precip Gage
Geonor I
Precip Gage




EE] DFIR (Double Fence Intercomparison Reference) (CRN) {b} TretyakOV (RUSS|an)
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) Nipher (Canada) M Dual-Gage Shielded / Unshielded

Fro. | Photographs of various gauges and wind shields, oy DFIR: (b Tretvakoy gauge: (o) Wyoming shield with Universal recording
mange: odi Aldter shield with unitversal recording gavge: (o) Canadian Nipher snow gauge: (1) Dual-gauge measuring svatem (bridled shield
and unshiclded universal recording caugesic rod NWS 8 nonrecording sauge, with the rainfall collector off as used Torsnowfall measurement:

@ Nws 8" standard Rain Gage

Daging Yang, Barry E. Goodison, John R.
Metcalfe, Valentin S. Golubev, Roy Bates,
Timothy Pangburn, Clayton Hanson, 1998.
Accuracy of NWS 8” Stnadard Nonrecording
Precipitation Gauge: Results and Application of
WMO Intercomparison.

Journal of Atmospheric and Oceanic Technology,
15 (2), 54-68.




E 140 (& o Danville +  Valdad E 140 (b} O Reynolds <+ Valdal
170 = Lt m o e e e e 1= 1 | e —
f ".apgn Snow, shlelded 8” SRG E Snow unshlelded 8” SRG
E 1067 - T i R o [} 100 = -
- e 5mis = 57 % catch. = 5mls =30% catch.
g B . ﬁ B0 ;
=
% 8- e B0
= |
!:' Q- —meas e e e T . E 40 —
e - - R L] a0
2 2
4] T T T T T T T T 4] T T T T T T T —
o 1 2 a 1 5 [ 7 a 8 o 1 2 3 a 5 8 7 8 8
Daily wind spead at gauge height {mys) Daily wind spead al gauge height {m/s)
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Fia. 3. Daily catch ratio (%) of the NWS 8" nonrecording gauge to the DFIR as a function of daily wind speed (m s') at the gauge
height for (a) Alter shielded, snow; (b) unshielded., snow: (c) Alter shielded and unshielded. mixed precipitation; and (d) Alter shielded and
unshiglded, rain.

Daging Yang, Barry E. Goodison, John R. Metcalfe, Valentin S. Golubev, Roy Bates, Timothy Pangburn, Clayton Hanson, 1998.
Accuracy of NWS 8” Stnadard Nonrecording Precipitation Gauge: Results and Application of WMO Intercomparison.

Journal of Atmospheric and Oceanic Technology, 15 (2), 54-68.



WMO Solid Precipitation Measurement Intercomparison Project.
Ten sites. US: Reynolds Creek ID. Danville VT.

“At least 54 gage types used around the world”
Rainfall differences usually within 5 percent.

Snowfall differences are up to 110 percent.
At 6 m/s, catch efficiency 20-70 percent for national gages.
Shielded gages can measure up to 70 percent more snow than unshielded.

Snowfall measurement differences are a function of
Gage design
Gage installation
Shielding presence
Shielding type
Type of precipitation (snow, rain, mixed)
Temperature (of snow)
wind speed

Daging Yang, Barry E. Goodison, John R. Metcalfe, Valentin S. Golubev, Roy Bates, Timothy Pangburn, Clayton Hanson, 1998. Accuracy of NWS 8"
Stnadard Nonrecording Precipitation Gauge: Results and Application of WMO Intercomparison. Journal of Atmospheric and Oceanic Technology,
15 (2), 54-68.

Daging Yang, Barry Goodison, John Metcalfe, Paul Louie, Esko Elomaa, Clayton Hanson, Valentin Bolubev, Thilo Gunther, Janja Milkovic, and Milan
Lapin, 2001. Compatibility evaluation of national precipitation gage measurements. Journal of Geophysical Research, 106, D2, 1481-1491, Jan 27,
2001.



| Slide Mountain
Toward NW




Operations? or testing ?

Ice
_|_

Wind
+

Imbalance
+

Shaking
+

Clouds
+

Battery Discharge
+

Persistence

“Interesting data”

Ward Peak. Lake Tahoe Basin. 8600 feet.
Photo: Arlen Huggins






Mt Warren Anemometer
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PN . Mt Warren Toward North




Mt Warren Toward West




Mt Warren Toward South
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White Mountain T 'J

Summit. \.{' f
Highest active live ;*f*‘""
transmission station /

in North America.
14246 ft. / 4342 m.

Summer 2003



White Mtn Summit, 14246 ft
Reconfigured July 2004




White Mtn Summit
Wind braces July 2004




White Mountain Research Station Summit Station. 14,245 feet. White diamond.
North American Regional Reanalysis grid. 32 km, 3-hourly, 29 levels.

3500
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11500

H1000

a00

John Abatzoglou
Kelly Redmond



White Mountain Research Station Summit Station. 14,245 feet.
Mean Daily Temperature Observations. Complete days Sep 2003-May 2008. 70% of all days.

NARR. Reconstructed from North American Regional Reanalysis, 32 km, 29 levels. r =0.985
(0.98 winter, 0.93 summer). 99 percent of all reconstructed values within 3 deg C of obs.

GR. Reconstructed from Global Reanalysis. r =0.97
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White Mountain Summit Temperature. 14,245 feet.
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Desert Research Institute, Storm Peak Laboratory. Steamboat Ski Area, Steamboat CO. (Randy Borys)
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There are few
long-term
In-situ
high-altitude
systematic
climate-quality

observational time series

with daily/hourly resolution for

the mountainous western United States and North America.

These are crucial to success of research to tie climate to
physical and biological processes, on many time scales.

How can we improve this?



Why is high elevation climate undersampled?

Harsh physical environment

Sensors and equipment

Maintenance

Access

Communications

Time

Budgets
Human presence limited, often seasonal.
Electrical power for heating often not available
Permitting, aesthetics, wilderness, etc

Most precipitation is frozen



ID Arco 17 SW, Craters of the Moon National Monument & Preserve (Hdq. Area)
43.5N 113.6 W 595%’
July 10, 2003
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AK Barrow 4 ENE, NOAA (CMDL Observatory)
71.3N 156.6 W 1%
Non-Commissioned July 22, 2002
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Latest Graphics

* Climate region data: 1395 to present
* Ayerages taken from: 1949-2005
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Sierra Region
Precipitation Oct-Sep
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Sierra Region
Precipitation Mar-May
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Sierra Region
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Not online yet. Mockup of home Page. Temporary Test Grid from Reanalysis.

North American Freezing Level Tracker
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Select type of product, set up display parameters, select location for time series or domain for map.

North American Freezing Level Tracker
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Selected a location over NW Colorado, or Upper Colorado River Basin.

Time series for March from 1948 through 2008.

North American Freezing Level Tracker
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Elevation of Freezing Level. North America. Spring 2007.
Relative height (departure from average). NCEP Reanalysis.
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Elevation of Freezing Level. North America. Spring 2008.
Relative height (departure from average). NCEP Reanalysis.

MAM 2008
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Elevation of Freezing Level. North America. January 2009.
Absolute height. NCEP Reanalysis.
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Elevation of Freezing Level. North America. January 2009.
Relative height (departure from average). NCEP Reanalysis.
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Percent of Spring Precipitation Falling with Freezing Level Below 6000 feet.
Larger fraction implies more precipitation as snow, less as rain.
Yosemite National Park. 1948-2008. NCEP Reanalysis Precipitation and Temperature.
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Some Big Picture Issues
The vast majority of monitoring efforts are not hypothesis-driven
Most monitoring efforts are in support of operations and management
Decision centric environment
Most agency monitoring efforts are in support of a basic mission
Different missions, equipment, maintenance, data pathways, archival, QC
Not so many multi-purpose generalized monitoring efforts
These have tended to be within NOAA
NOAA measurements usually insufficient
Too sparse, people centric, commerce-centric, biased sampling,
Most major long-term networks are federal (taxpayer supported)
Gap analyses needed, what are we missing, for what purpose?
Original data have some value, but ...
Data have much more value when turned into information
Some issues (climate change) require very strict measurement standards

Present “climate observing network” was not set up to observe climate change



Some Big Picture Issues
Most monitoring is geared toward “what?” rather than “why?”
Attribution is an issue of increasing interest (“why?”)
Some monitoring is useless without metadata
Metadata not just a snapshot, but is a history
Metadata has numerous QC issues too
Quality Control:
The identification and improvement of imperfect information by making
of other imperfect information
Why monitor?
Documentation of conditions for future reference
Identification of important events and processes thru retrospective analysis
Operational management and decision-making
Public safety and outreach
Provide baseline reference-quality measurements to assist in interpretation
of other supplemental measurements

Assist with translation to gridded formats



A few more thoughts

With complicated topography, we can never have enough stations
Therefore, what is the most judicious placement of stations?
Redundancy is bad, costs resources.

Redundancy is good, helps QC and data credibility and fills gaps.

Current quality control of daily data. Very difficult in western terrain. Estimate
nationwide by Ken Hubbard of HPRCC is that 60 percent of all daily coop data
edits are Type | errors (good data are judged to be bad). More mistakes
introduced than fixed.

Quality control: Best bang for the buck is to produce high quality data right out
of the starting gate, rather than fix the data later on downstream.

Some “networks” are haphazard ad-hoc opportunistic confederations of stations
with a variety of purposes, interests, methods, and equipment.

Observational networks are as much people networks as hardware networks.
For sustained operation, observations need constituencies.



Combining networks for a de facto mesonet: Local versus central needs

Locally perceived and defined needs, and funding
More often funding is mainly for deployment
Not often the luxury of identifying maintenance source

(deployment becomes deplorement)

Centrally perceived and defined needs
What is the incremental value of a station to a system ?
A very common problem, nobody has solved it.
Value may occur from contribution to a grid (eg, forecast initialization)
Hard to quantify value, if it clearly exists
Forecast and modeling grids are getting finer and finer

This drives up the need for fine scale ground truth

Biggest issue — how to apportion costs when benefits are distributed

Station benefits provided to, and received from, other communities



Network X as a contributor to a network of networks

In the face of a continual push toward more fine scale information demand ...
How can we edge toward greater coordination of station networks?
Joining with other networks
ASOS, AWOS, Snotel, Coop Modernization, RAWS, special mesonets
Have broached this with other agencies, such as USDA Snotel
A national mesonet consortium ?
Cost / benefit assessments have difficult time with whole-system analysis
Leveraging of assets and activities across federal agencies

Different missions and justification processes

Who's looking at the big picture ?
Value of a tree (station) vs. Value of a forest (network)
Different species of trees, too. (Different agencies)
Full quantification impossible — expert judgment and intuition are essential

Logical venue to work these issues out? Grass roots, to start with. Has never
been dealt with from the top.



Other thoughts

WeatherCoder Il entry of NWS manual measurements

Currently run and maintained by WRCC for NWS and RCCs nationwide

Will become more distributed (using ACIS framework; rcc-acis.org)
Citizen networks can help some, especially to fill in gaps

Adherence to standards expected, but cannot be forced

Often lots of enthusiasm. Some of it lingers.

Low cost, low tech

Web pages exist to manage data

CoCoRAHS now about 13,0000 observers

Similar to National Phenology Network

Climate platforms in national wildlife refuges: “Thanks for the roost!” anon bird



Back to Multiple Scales

Spatial scales: Planetary to organism 10,000,000 m to 0.1 m
Temporal scales: minutes to centuries
Spatial scales
Organism: where climate effects are most directly experienced
Organisms are affected indirectly by a succession of scales
What portion of locally experienced climate is ascribable to other scales
Temporal scales
Change happens
Slowly and steadily
In bursts and episodes
When accumulated strains exceed some threshold
Slow accumulation, instantaneous exceedance
From stochastic events: Climatic disturbances

Seconds to years



Spatial scales, a little more
Obtaining sufficient network density
Long-term dense networks extremely rare, hard to maintain, hard to justify
Transects and clustering: Incremental value of new locations
Fine scale spatial structure of climatic characteristics
Large gradients in surface climate
In complex terrain
Near coastlines
When it’s cold
Alaska has all three
Implication and observations:
Climate histories at closely spaced sites may vary greatly from one another
However, fine scale spatial correlation depends upon
Season
Location
Topography

Presence / absence of snow cover



So, you wannarun a climate network?
A Checklist
Guidelines prepared for CIRMOUNT Mountain Climate Network, and for NPS

Climate versus Weather

Climate measurements require consistency through time.

Network Purpose

Anticipated or desired lifetime.
Breadth of network mission (commitment by needed constituency).
Dedicated constituency—no network survives without a dedicated constituency.

Site Identification and Selection

Spanning gradients in climate or biomes with transects.
Issues regarding representative spatial scale—site uniformity versus site clustering.
Alignment with and contribution to network mission.

Exposure—ability to measure representative quantities.

Logistics—ability to service station (Always or only in favorable weather?).
Site redundancy (positive for quality control, negative for extra resources).
Power—is AC needed?

Site security—is protection from vandalism needed?

Permitting often a major impediment and usually underestimated.



Running a network - 2
Station Hardware

Survival—weather is the main cause of lost weather/climate data.
Robustness of sensors—ability to measure and record in any condition.
Quality—distrusted records are worthless and a waste of time and money.

High quality—will cost up front but pays off later.

Low quality—may provide a lower start-up cost but will cost more later (low

cost can be expensive).
Redundancy—backup if sensors malfunction.
Ice and snow—measurements are much more difficult than rain measurements.
Severe environments (expense is about two—three times greater than for
stations in more benign settings).

Communications

Reliability—Ilive data have a much larger constituency.
One-way or two-way.
Retrieval of missed transmissions.
Ability to reprogram data logger remotely.
Remote troubleshooting abilities.
Continuing versus one-time costs.
Back-up procedures to prevent data loss during communication outages.
Live communications increase problems but also increase value.



Running a network - 3
Maintenance

Main reason why networks fail (and most networks do eventually fail!).

Key issue with nearly every network.

Who will perform maintenance?

Degree of commitment and motivation to contribute.

Periodic? On-demand as needed? Preventive?

Equipment change-out schedules and upgrades for sensors and software.

Automated stations require skilled and experienced labor.

Calibration—sensors often drift (climate).

Site maintenance essential (constant vegetation, surface conditions, nearby
influences).

Typical automated station will cost about $2K per year to maintain.

Documentation—photos, notes, visits, changes, essential for posterity.

Planning for equipment life cycle and technological advances.

Maintaining Programmatic Continuity and Corporate Knowledge

Long-term vision and commitment needed.
Institutionalizing versus personalizing—developing appropriate dependencies.



Running a network - 4
Data Flow

Centralized ingest?

Centralized access to data and data products?

Local version available?

Contract out work or do it yourself?

Quality control of data.

Archival.

Metadata—historic information, not a snapshot. Every station should collect
metadata.

Post-collection processing, multiple data-ingestion paths.

Products

Most basic product consists of the data values.
Summaries.
Write own applications or leverage existing mechanisms?

Funding

Prototype approaches as proof of concept.

Linking and leveraging essential.

Constituencies—every network needs a constituency.

Bridging to practical and operational communities? Live data needed.
Bridging to counterpart research efforts and initiatives—funding source.
Creativity, resourcefulness, and persistence usually are essential to success.



Running a network - 5
Final Comments
Deployment is by far the easiest part in operating a network.
Maintenance is the main issue.
Best analogy: Operating a network is like raising a child; it requires constant
attention, and the kid never leaves home.

Source: Western Regional Climate Center (WRCC)
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