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Abstract 

Ecosystem metabolism and the contribution of carbon dioxide from lakes to the atmosphere can be estimated from 
free-water gas measurements through the use of mass balance models, which rely on a gas transfer coefficient (k) to 
model gas exchange with the atmosphere. Theoretical and empirically based models of k range in complexity from 
wind-driven power functions to complex surface renewal models; however, model choice is rarely considered in most 
studies of lake metabolism. This study used high-frequency data from 15 lakes provided by the Global Lake Ecological 
Observatory Network (GLEON) to study how model choice of k influenced estimates of lake metabolism and gas 
exchange with the atmosphere. We tested 6 models of k on lakes chosen to span broad gradients in surface area and 
trophic states; a metabolism model was then fit to all 6 outputs of k data. We found that hourly values for k were sub-
stantially different between models and, at an annual scale, resulted in significantly different estimates of lake 
metabolism and gas exchange with the atmosphere. 
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Introduction

Atmospheric gas exchange in lakes is routinely used to 
evaluate the role of lakes in global carbon cycling (Cole et 
al. 2007, Tranvik et al. 2009, Raymond et al. 2013). The 

exchange of soluble gases, including oxygen and carbon 
dioxide (CO2), across the air–water interface is influenced 
by physical processes such as wind stress, convection, and 
currents and is described by the gas transfer coefficient (k; 
Zappa et al. 2007). Variability in k can span several orders 
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of magnitude (Wanninkhof 1992), primarily driven by diel 
and seasonal variations in mass and energy fluxes at the 
lake surface. Methods to determine k include gas tracers 
(Cole and Caraco 1998), floating chambers (Cole et al. 
2010, Vachon et al. 2010), and eddy covariance techniques 
(Jonsson et al. 2008, MacIntyre et al. 2010a, Heiskanen et 
al. 2014). If observational data are unobtainable, k must be 
estimated using models. 

With an estimate of k, an atmospheric flux (F) can be 
calculated based on dissolved oxygen (DO) concentrations 
and surface-mixed layer depth in a lake. This flux is often 
incorporated into metabolism models, which assume that 
changes in DO can be used as a surrogate for CO2 based on 
the stoichiometric relationship between the 2 gases as part 
of gross primary production (GPP) and aerobic ecosystem 
respiration (R; Odum 1956, Hanson et al. 2008):

 dO2 ⁄ dt = GPP − R + F + e.   (1)

Lake metabolism is considered the net balance between 
GPP and R, which is equivalent to net ecosystem 
production (NEP; Pace and Lovett 2013) and must be 
balanced by F and changes in the standing stock of DO 
(dO2 ⁄dt ; equation 1). Note that an additional term (e), 
which accounts for the errors introduced by the inflow and 
outflow of oxygen, is ignored. This is an assumption 
applied in cases where those terms are a small part of the 
budget (Staehr et al. 2010). 

Most approaches to estimating NEP from free-water 
measurements of dissolved gas assume a model for gas 
exchange and treat metabolism as a free parameter to be 
estimated (Hanson et al. 2008). Under these assumptions, 
any uncertainty not accounted for in k will compound 
error in NEP estimates. One of the most widely cited 
models of k is an empirically derived power function 
based solely on wind speed, which was developed from 
data collected on small lakes (Cole and Caraco 1998). 
Subsequently, Crusius and Wanninkhof (2003) derived a 
similar empirical model optimized for low wind speeds. 
More recently, surface renewal models have been used to 
incorporate the role of convective mixing on gas exchange 
(MacIntyre et al. 2010a, Read et al. 2012, Tedford et al. 
2014). Each model has a different set of assumptions and 
varies in the complexity of terms and data requirements, 
and many models based on empirical data were developed 
for specific limnological and meteorological conditions. 
Only recently have studies begun to incorporate multiple k 
models (Staehr et al. 2010, Heiskanen et al. 2014,  
Bartosiewicz et al. 2015).

As the suite of available k models, as well as model 
complexity, grows, there is a need to analyze how k model 
choice ultimately influences NEP and gas exchange 
estimates (Fig. 1). Here we focus on 3 central questions: 
How do k values estimated from a variety of gas flux 
models vary, and how does this variance influence inferred 
NEP values? Is model choice a larger contributor to error in 

Fig. 1. Hypothetical uncertainty in net ecosystem production (NEP) estimates given a range of gas flux models. As a given lake 
attribute changes, each gas flux model may predict varying levels of NEP. Lake attribute could represent lake area, trophic status, or 
other lake characteristic.
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NEP estimates than the uncertainty in parameterizing GPP 
and R? Under what limnological or meteorological 
conditions is gas flux model choice important? We 
capitalize on the availability of a high-frequency, multi-lake 
dataset associated with the Global Lake Ecological 
Observatory Network (GLEON, www.gleon.org) to 
examine the sensitivity of lake metabolism estimates to 6 
published models of k across a gradient of lakes. We 
compare how k values differ across lakes with a range of 
physical and trophic states and examine which lake charac-
teristics may influence the sensitivity of NEP and gas 
exchange estimates to changes in k. This comparison 
identifies the circumstances in which model choice is 
important, those in which it is not, and in what types of 
lakes further research is needed to establish model efficacy. 

Methods

Study sites

We selected 15 temperate lakes that range in surface 
area from 0.005 to 79 km2, in maximum depths from 
2.5 to 36 m, and trophic status from oligotrophic to 
eutrophic (Table 1) based on the availability of high 
temporal frequency measurements (15–60 min sampling 
interval) required for estimating ecosystem metabolism 
(Odum 1956, Cole et al. 2000, Van de Bogert et al. 2007). 

Measurements included DO, water temperature, and 
surface meteorology (air temperature, wind speed, 
relative humidity, and photosynthetically active radiation 
[PAR]). All data were collected between 2007 and 2010, 
and data for each lake include between 133 and 338 days 
of observation. The dataset was collected through 
GLEON and has been used previously in large-scale lim-
nological analyses (Solomon et al. 2013, Rose et al. 
2014). Additional information about the lakes can be 
found in Solomon et al. (2013). 

Metabolism model

For the purpose of this investigation we used the discrete 
form of equation 1, similar to Solomon et al. (2013):

 DOt+1 = DOt + (ι × It) − ρ + Ft + γt,  (2)

where DOt+1 is the concentration of DO at time t + 1, ι is 
the primary productivity per unit of PAR, It is the available 
PAR at time t, ρ is the whole-ecosystem respiration, and Ft 

is the flux of O2 between the lake and the atmosphere at 
time t. We calculated model process error at time t as γt.  
A Nelder-Mead optimization algorithm was used to find the 
values of ι and ρ that minimized the negative log-likelihood 
of the errors, γt, for a given day. GPP at the daily scale was 
calculated from ι and the sum of PAR over the day  

Table 1. Physical properties of the 15 GLEON lakes included in this study. Trophic status is defined using water quality data (Carlson 
1977) provided in Solomon et al. (2013) and Staehr et al. (2010). Wind height is the height at which the original wind data were recorded 
prior to adjustment to wind speed at 10 m height..

Lake Lat. Long. Max. 
depth 
(m)

Mean 
depth 
(m) 

Area 
(km2) 

Trophic 
status

Wind 
height 

(m)

Date range Total 
days

Acton 39.575 −84.744 8 4 2.530 eutrophic 4.9 Apr-10 Sep-10 133
Annie 27.207 −81.351 20.7 9 0.365 mesotrophic 10 Mar-08 Feb-09 305
Castle 55.934 12.303 9 — 0.223 hyper-

eutrophic
1.3 Apr-06 Nov-06 226

Crystal Bog 46.008 −89.606 2.5 2 0.005 dystrophic 2 May-08 Nov-08 149
St. Gribsø 55.983 12.303 12 5 0.100 eutrophic 1.3 Apr-06 Nov-06 227
Hampensø 56.020 9.333 14 4 0.760 mesotrophic 1.3 Apr-07 Oct-07 166
Mendota 43.099 −89.652 25.3 13 39.377 eutrophic 2 Apr-09 Nov-09 213
N. Sparkling Bog 46.005 −89.705 4.3 — 0.005 dystrophic 2 Apr-09 Dec-09 228
Rotorua −38.066 176.266 21 11 78.780 mesotrophic 1.5 Jul-07 Jul-08 338
Sparkling 46.008 −89.701 20 11 0.640 oligophic 2 May-09 Nov-09 200
Sunapee 43.383 −72.033 32 10 16.670 oligophic 2 May-08 Oct-08 148
Trout 46.029 −89.665 36 15 16.080 oligophic 2 May-08 Nov-08 155
Trout Bog 46.041 −89.686 7.9 6 0.011 dystrophic 2 May-08 Nov-08 155
Vedstedsø 55.167 9.333 12 5 0.090 mesotrophic 1.3 May-08 Dec-08 202
Yuan Yang 24.583 121.402 4.5 1.7 0.036 mesotrophic 2 Jan-09 Jan-10 316



584

DOI: 10.5268/IW-6.4.836

Dugan et al.

© International Society of Limnology 2016

(GPP = ι × ∑ It). This linear relationship was chosen 
because more complex nonlinear equations do not 
generally improve metabolism estimates, especially in 
temperate lakes (Hanson et al. 2008). Both GPP and ρ, 
measured as O2, have units of mg L−1 d−1, presented as  
g  m−2 d−1 when multiplied by the depth of the mixed layer 
(zmix).

Gas exchange, Ft (mg L−1d−1 O2), was calculated as:

 Ft = −kO2t × (DOt − DOsat) ⁄ zmix,t, (3)

where DOsat is the saturation concentration of O2 (mg L−1) 
at the current water temperature and atmospheric pressure 
(Benson and Krause 1984), and zmix,t (m) is calculated as 
the shallowest depth at which the rate of water density 
change exceeded 0.075 kg m−3 m−1 (Solomon et al. 2013). 
The term (DOt − DOsat) is the deviation from saturation 
(DOdiff), where negative values indicate under-saturation 
of DO in the surface waters of lakes. The gas exchange 
coefficient for oxygen (kO2, cm h−1) was calculated as:

 kO2 = k × (ScO2 ⁄ 600)−n,  (4)

where k (cm h−1) is the gas transfer coefficient, ScO2 is the 
Schmidt number for O2 calculated based on given 
temperature and water density (Wanninkhof 1992), and n 
is a dimensionless coefficient to represent the surface 
conditions. We followed Crusius and Wanninkhof (2003) 
for parameterized n values of 0.5 for wind speeds >3 m s−1 
and 0.67 otherwise. 

Gas transfer coefficient (k)

We calculated k from 6 published gas flux models to 
estimate gas exchange across all lakes (Table 2). For 5 of 
the published models (abbreviated as CC98, CW03, 
VP13, T14, and H14), we adhered to the published 
methods and parameters in our analysis (Cole and Caraco 
1998, Crusius and Wanninkhof 2003, Vachon and Prairie 
2013, Heiskanen et al. 2014, Tedford et al. 2014). Because 
CW03 does not describe any single model, rather 4 
different models based on the same dataset, we chose the 
exponential form because it been used elsewhere in the 
literature (Staehr et al. 2012, Trolle et al. 2012). For the 
sixth model, we augmented the model used in Read et al. 
(2012) with the addition of a breaking wave component 
(Soloviev et al. 2007) and refer to it as R12S. All models 
used in this study are included in the LakeMetabolizer R 
package (Winslow et al. 2014, 2016). 

 CC98 and CW03 are univariate models based solely on 
wind speed, and VP13 is a bivariate model based on wind 
speed and lake area. Both CW03 and VP13 were developed 
in low-wind environments, where wind speeds did not 

exceed 6 m s−1 (Table 2). R12S, T14, and H14 are surface 
renewal models that take into account processes that 
generate turbulence near the air–water interface, which is 
quantified as the dissipation rate of turbulent kinetic energy. 
In T14, the mixed layer depth was set constant at 0.15 m 
(Bartosiewicz et al. 2015). To calculate convection, the 
surface energy budget was computed according to Verburg 
and Antenucci (2010) and buoyancy flux following Kim 
(1976). For all models, wind speed was normalized to a 
reference height of 10 m, presented as u10 (Schertzer et al. 
2003). In certain cases, we extrapolated k models beyond 
the wind speeds they were developed under; however, only 
2% of hourly mean wind speeds exceeded 9 m s−1. 

Uncertainty analysis

We were interested in understanding whether the gas flux 
model choice affected metabolism and gas exchange rates 
more or less than the uncertainty in parameterizing GPP 
and R (ι and ρ in equation 2) given a specific gas flux 
model. Within-model uncertainty, based on the parameter 
uncertainty of ι and ρ, was determined using a bootstrapping 
routine comparable to Solomon et al. (2013). To produce 
a distribution of metabolism estimates for each gas flux 
model, we determined the residual error between the 
optimized metabolism model and observed DO for each 
gas flux model. We then created pseudo-observations by 
selecting a random residual and constructing a time series 
of errors with a random normal distribution with the same 
autocorrelation and standard deviation and adding them 
to the original DO model predictions. The metabolism 
model was fit to the 1000 pseudo-observations to provide 
1000 estimates of NEP for each day and an estimate of ι 
and ρ parameter uncertainty. The bootstrapped estimates 
were then averaged for the entire season to give 1000 
mean annual NEP estimates for each lake. Values were 
considered significantly different between k models when 
95% confidence intervals did not overlap. This bootstrap-
ping routine provides a robust measure of within-model 
uncertainty. Mann-Whitney U-tests were run to test any 
significant differences between distributions. All modeling 
and analyses were performed in the R statistical package 
3.0.3 (R Core Team 2014).

Representative Lakes

For illustrative purposes, we highlight data and results 
from 3 example lakes chosen from the dataset to 
represent a range in lake size and metabolism rates: 
Trout Bog, Acton, and Trout lakes. 
• Trout Bog is a small (0.011 km2) dystrophic lake in 

northern Wisconsin, with a maximum depth of 7.9 m. 
Wind was measured at a height of 2 m, DO was 
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measured at 0.25 m depth, and water temperatures 
were measured at 0, 0.5, 1, 1.5, 2, 2.5, 3, 4, and 5 m 
depths. 

• Acton is a shallow medium-sized (2.530 km2) 
eutrophic lake in southwestern Ohio, with a maximum 
depth of 8 m. Wind was measured at a height of 4.9 m, 
DO was measured at 1.5 m depth, and water tempera-
tures were measured at 1, 3, and 5 m depths. 

• Trout Lake is a large (16.080 km2) oligotrophic lake in 
northern Wisconsin, with a maximum depth of 36 m. 
Wind was measured at a height of 2 m, DO was 
measured at 0.5 m depth, and water temperatures 
were measured from 0 to 19 m at 1 m increments. 

Results

In all 6 models of gas flux, k values generally increased 
with wind speed but showed markedly different 
variation and patterns among models (Fig. 2). For a 
given wind speed, CC98 and CW03 (univariate 
functions based on wind speed) returned a single k 
value, whereas all other models covered a range of k. 
When wind was negligible, CC98, CW03, and VP13 
predicted k minima of 2.1, 0.2, and 2.7 cm h−1, respec-
tively. At wind speeds of 5 m s−1, k ranged from 3.9 to 
11.9 cm h−1 across models, with the greatest variation 
observed in H14. At wind speeds >7 m s−1, k values 

Table 2. The locations and methods used in developing each of the 6 published gas flux models. A list of data required to implement 
each model as well as any model constraints are provided. k600 is a gas transfer coefficient.

Model Study area and methods Results and model requirements Reference(s)
CC98 An SF6 tracer experiment on 

Mirror Lake, NH (area 0.15 km2) 
was compared with whole-system 
estimates from nine lakes. 

Power function based on wind speed: 
k600 = 0.215 × u101.7 + 2.07

Developed for wind speeds <9 m s−1

Cole and Caraco (1998)

CW03 An SF6 tracer experiment on Lake 
302N (0.128 km2) in the Experi-
mental Lakes Area, Ontario. 

Bilinear, linear and power functions based on wind 
speed. Power function used in this study: 
k600 = 0.228 × u102.2 + 0.168

Developed for wind speeds <6 m s−1

Crusius and Wanninkhof 
(2003)

R12S High-frequency measurements of 
water temperature and meteoro-
logical variables from 40 
temperate lakes (0.0006–640 
km2).

k600 is calculated using a surface renewal model. The 
Read et al. (2012) model, which calculates the 
dissipation rate of turbulent kinetic energy as the 
sum of a wind shear and convection component, is 
augmented with a breaking wave component as in 
Soloviev et al. (2007). 

Minimum inputs: u10, air temperature, relative 
humidity, short-wave radiation or PAR, lake area, 
light attenuation coefficient of PAR, depth-resolved 
water temperature measurements.

Read et al. (2012),
Soloviev et al. (2007)

VP13 64 floating chamber measure-
ments from a large reservoir (602 
km2) and 8 smaller temperate 
lakes (0.19–4.0 km2) in Quebec. 

Linear model based on wind speed and lake area 
(LA) was the best predictor of k600. 
k600 = 2.51 + (1.48 × u10) + (0.39 × u10 × log10LA) 

Developed for wind speeds <6 m s−1

Vachon and Prairie 
(2013)

T14 High-frequency water temperature 
and eddy covariance measure-
ments on a temperate lake in New 
York, USA (4 km2).

k600 is calculated using a surface renewal model, 
where the dissipation rate of turbulent kinetic 
energy is calculated separately for periods of 
heating and cooling. 

Minimum inputs: same as R12S, mixed layer depth 
(fixed at 0.15 m).

Tedford et al. (2014)

H14 High-frequency water 
temperature, dissolved CO2, and 
eddy covariance measurements on 
Lake Kuivajärvi, Finland (0.63 
km2)

k600 is calculated using a boundary layer model that 
includes wind shear and cooling components. 
Minimum inputs: same as R12S, mixed layer depth 
(fixed at 0.15 m)

Heiskanen et al. (2014)
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were up to 20 cm h−1 and deviated substantially among 
models. Overall, T14 returned the highest k values at 
wind speeds <7 m s−1, and CC98 returned the lowest  
k values at wind speeds >4 m s−1. CW03 covered the 
largest range due to the extrapolation of the model to 
wind speeds >6 m s−1. 

At diel scales, the dominant drivers of k changed 
across lakes and with alternative models, as illustrated 
in the 3 example lakes over a 3-day period in July (Fig. 3). 
Trout Bog is a small lake characterized by low wind 
speeds. Over the period of 3–6 July, daily wind speeds 
increased (Fig. 3a). The influence of wind speed resulted 
in increasing daytime k values over this period up to 6 cm 
h−1. At night, only the surface renewal models predicted 
increases in k, whereas CC98, CW03, and VP13 all 
reached a minimum at night (Fig. 3d). Acton is larger 
than Trout Bog, but similar dynamics were seen in the  
k estimates. In both lakes, H14 returned the highest  
k values at night, whereas CW03 returned the lowest 
values overall (Fig. 3d, 3e). The third lake is Trout 
Lake, which is illustrative of a large waterbody. During 
early July, hourly wind speeds exceeded 10 m s−1, and  
k ranged from 12 to 30 cm h−1. CW03 returned k values 
>30 cm h−1, but this model was extrapolated at wind 
speeds >6 m s−1. In Trout Lake, all gas flux models 
predicted a similar pattern of k (Fig. 3c and f). 

The density distribution of k differed in the 3 lakes 
(Fig. 4). CC98 and CW03 were skewed right in all 
lakes, with dominant peaks near 0 and 2 cm h−1 for 
CW03 and CC98, respectively. The surface renewal 
models were more normally distributed. Often, the peak 
frequency of R12S was lower than VP13, which was 
lower than T14 and H14 (Fig. 4). 

Fig. 2. Gas transfer coefficient (k) derived from 6 different models 
with respect to wind speeds (u10) <9 m s−1. Data points represent 
hourly values for 15 GLEON lakes from a global dataset.

Fig. 3. (a–c) Hourly wind speed (u10) for a 3-day period in early July at Trout Bog, Acton and Trout Lake. (d,–f) Hourly k estimates from 6 gas 
flux models over the same 3-day period. Note the difference in the scale of the y-axis for all variables across the 3 lakes.
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Across the 15 lakes, there was marked variation in 
median wind speed, DOdiff, and modeled k values (Fig. 5a–c). 
Wind speeds and variability in wind speeds generally 
increased with lake size, with the exception of Annie, 
Acton, and Sunapee, which had lower median wind 
speeds than lakes of comparable size. Conversely, the 
range in DOdiff seemed unrelated to lake size. The 
smallest lakes (North Sparkling Bog, Crystal Bog, Trout 
Bog, and Yuan Yang) were all under-saturated, whereas 
the larger lakes showed no pattern in oxygen concentration. 
Of the larger lakes, the range in DOdiff concentrations 
was greatest in Castle, Acton, and Mendota and smallest 
in Annie, Sparkling, Trout, and Sunapee. 

Overall, the gas flux models generally predicted 
higher k with larger lake area, which is concomitant 
with an increase in wind speed (Fig. 5a and c), although 
this correlation is biased by single-point measurements 
from the center of the lakes (see Schilder et al. 2013, 
Vachon and Prairie 2013). CW03 and CC98 generally 
had the lowest range of k, whereas the highest k values 
were from H14 in the small lakes and from VP13 and 
H14 in the large lakes. In larger lakes, the intra-model 
variability was more similar across models, and 
estimates showed more overlap than in small lakes. 

Fig. 4. Density distribution for the entire hourly record of k in Trout 
Bog (WI), Acton (OH) and Trout Lake (WI) for each of the 6 
models.

Fig. 5. Box plots of data from the full time series of (a) wind speed (u10), (b) DOdiff, and (c) k at all 15 lakes ordered by lake area. The box 
edges and middle line represent the 25th, 50th (median), and 75th quartiles of the dataset.
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near equilibrium, however, NEP estimates between 
models were similar (Fig 7); this group of lakes includes 
Vestedsø, Gribsø, Sparkling, Hampensø, Trout, and 
Rotorua. The 4 smallest lakes and large lakes Castle, 
Acton, Sunapee, and Mendota had a large separation in 
mean NEP estimates based on model choice. The 4 
smallest lakes tended to be under-saturated in DO and 
net heterotrophic (negative NEP), whereas the larger 
lakes were mostly net autotrophic (positive NEP). In 8 of 
the lakes, H14 predicted the greatest absolute NEP 
values, whether for lakes with negative or positive NEP. 
In 3 of the largest lakes (Acton, Sunapee, and Mendota), 
the use of VP13 led to the highest estimated NEP. Gribsø 
was the only lake where model choice determined 
whether the estimated mean annual NEP was positive or 
negative. At this site, surface waters progressed from  
supersaturation of DO in April to under-saturation by 
midsummer, back to supersaturation in October. 

When comparing k models in our optimized 
metabolism model, there was no uniform pattern in best 
fit; therefore, we cannot conclude that any one k model 
functions better across lakes. Estimated atmospheric gas 
exchange was highly correlated with modeled NEP, with 
r2 = 0.86 across all models and all lakes. In the 3 
example lakes, k models show broadly similar patterns 
in NEP through time (Fig. 6). In Trout Bog, waters 
became highly under-saturated in late October, and NEP 
estimates (measured as O2) between models diverged 
beyond −10 g m−2 d−1 (Fig. 6a). Acton, a large eutrophic 
lake, had positive NEP for most of the record, unless 
surface waters became under-saturated in DO (Fig. 6b, 
e, and h). Trout Lake had near saturation of DO 
throughout the summer, resulting in NEP close to zero 
and considerable model overlap (Fig. 6c, f, and i).

In all 15 lakes, mean annual NEP was significantly 
different between models (Mann-Whitney U-tests,  
p < 0.01, n = 1000). In lakes with oxygen concentrations 

Fig. 6. (a–c) Entire record of mean daily NEP estimates at Trout Bog, Acton, and Trout lakes for the 6 models. Shaded areas around mean lines 
represent the 5th and 95th percentile of mean NEP estimates from the bootstrapping routine and are used to illustrate the uncertainty around ι and 
ρ parameter choice in the metabolism model. (d–f) Mean daily NEP estimates (measured as O2) from 1 to 8 July for the 3 lakes. (g–i) Hourly 
observed dissolved oxygen concentrations (black) and concentration at saturation (gray) from 1 to 8 July. Note the difference in the scale of the 
y-axis for all variables across the 3 lakes.
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Discussion

Our analysis demonstrates that gas flux model selection 
leads to a range in k values for all lakes due to the 
driving processes incorporated in each model. For 
instance, in low-wind environments, such as the bog 
lakes, gas exchange can be driven largely by diel heating 
and cooling (Read et al. 2012, Heiskanen et al. 2014, 
Podgrajsek et al. 2015). R12S, T14, and H14, which 
incorporate a convective forcing component, are 
potentially able to reproduce the diel variability in k 
caused by buoyant mixing (Fig. 3). The wind-based 
models have no temporal variability in low wind environ-
ments. In the 4 smallest lakes, CW03 predicted the lowest 
k values (Fig. 3 and 5). Because CW03 was calibrated 
for a lake similar in size to Gribsø, it may better 
represent medium sized lakes, where wind speeds are 
infrequently near 0 m s−1 and rarely >7 m s−1. CW03 
estimates become closer to other model outputs in the 
larger lakes (Fig. 5). 

In larger lakes, the convective aspect of the surface 
renewal models was less evident due to the dominance of 
wind-induced mixing, and these lakes exhibited a weaker 
diel pattern for all models (Fig. 3f). In the large lakes 
within our dataset (>16 km2), the high variability in k 
(Fig. 5) is a product of how each model treats exchange at 
medium to high wind speeds. For the 6 largest lakes, CC98 
generally produced the lowest values of k, whereas CW03 
covered the largest range. VP13 and H14 generally covered 
the same range of k values, whereas T14 was always 
slightly lower. R12S covered a range that encompassed 
H14 and T14 (Fig. 5). In the original R12 model (as 
presented in Read et al. 2012), k values became constant at 
high wind speeds. In our R12S model, this leveling off was 
compensated by the addition of a breaking wave 
component (Soloviev et al. 2007). In general, the large 
range in k estimates at wind speeds >10 m s−1 stems from 
the infrequency of high mean daily wind speeds, and 
therefore empirical gas flux data (Fig. 2). In our dataset, 
85% of daily mean wind speeds were <5 m s−1 (Fig. 8). 

Fig. 7. Box plots of mean NEP estimates (measured as O2) generated from the bootstrapping routine (n = 1000) for the full time series and for the 
6 models. The plots were separated to expand the y-axis range. Lakes are ordered in ascending area, with (a) 11 smallest lakes and (b) 4 largest 
lakes. The exception is the order of Trout and Acton, which have been switched for legibility. Each box represents the uncertainty of the ι and ρ 
parameter estimates in the metabolism model. The box edges are the 25th and 75th quartiles, and the whiskers extend the full range of the data.
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From our dataset of 15 lakes, we showed that gas flux 
model choice has a substantial effect on NEP estimates in 
most systems. In the small lakes, persistent under-saturation 
resulted in a narrow range in intra-model NEP 
estimates, but median NEP estimates (as O2) varied 
from 0 to −2 g m−2 d−1 (Fig. 7). In Mendota and Acton, 2 
large eutrophic lakes, DOdiff was more variable throughout 
the year, and, as a result, the error in annual NEP estimates 
due to ι and ρ parameter uncertainty was ~1 g m−2 d−1, 
which is much higher than seen in smaller lakes (Fig. 5). 
This seasonality is a critical factor in scaling-up daily 
estimates to annual averages and should be carefully 
considered when interpreting annual averages. In most 
lakes, the 3 surface renewal models studied here predicted 
larger absolute NEP than wind-based models. The 
exception was VP13, which compared well to H14 and 
R12S in most of the 15 study lakes. 

Our results highlight the uncertainty in both model 
choice and ι and ρ parameter uncertainty but do not 
validate any specific model. Three important conclusions 
to be drawn from our results are:

1. There is more uncertainty in model choice than in 
the parameterization of the metabolism model. 

2. NEP and DO saturation are inherently correlated, 
as defined in equation 3. Therefore, as surface 
water DO concentrations deviate from saturation, 
the larger the absolute range in NEP estimates 
will become based on any difference in k values. 
If DOdiff is known, this relationship could be 
considered prior to running a metabolism model. 

DOdiff can also be incorporated lake-wide to 
judge spatial heterogeneity (Vachon and Prairie 
2013, Schilder et al. 2013).

3. When DO concentrations fluctuate between 
under- and over-saturation throughout the year, 
model choice can govern whether the calculated 
mean NEP is positive or negative, as seen in 
Gribsø. 

Furthermore, k value outputs from VP13 closely 
match those from both R12S and H14. Because VP13 
only requires the input of wind speed and lake area, it is 
easily applicable in circumstances where high-frequency 
meteorological and water temperature data are not 
available. 

The eddy covariance studies cited here have argued 
that CC98 significantly underestimates gas flux 
(MacIntyre et al. 2010a, Heiskanen et al. 2014), and 
that k models that incorporate a buoyancy flux term 
better represent realistic gas flux (MacIntyre et al. 
2010b, Tedford et al. 2014). Uncertainties in NEP have 
consequences for the interpretation of carbon budgets in 
lakes, and choice of k model may impact those interpreta-
tions. It may be that the traditional wind-based models 
have substantially underestimated the role of lakes as 
carbon sources and sinks. For example, CC98 has been 
used for large-scale lake carbon budget studies (Cardille et 
al. 2007, McDonald et al. 2013) and for simulating carbon 
balance across a broad range of load scenarios in lakes 
(Hanson et al. 2004). If the same studies had employed an 
alternative model such as H14, NEP estimates would have 

Fig. 8. Frequency distribution of mean daily wind speeds (u10) stacked across the 15 lakes.
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been roughly double the estimates produced using CC98 
for many lakes (Fig. 7). In lakes where NEP is negative, 
such an increase would require a doubling of the external 
organic carbon load to support NEP or greatly reducing 
the internal production of organic carbon. In lakes where 
NEP is positive, the converse would be true. Either 
scenario would force us to rethink how we parameterize 
models of primary production in lakes. Similarly, in an 
analysis of global CO2 emission from lakes, Raymond et 
al. (2013) estimated a global average gas transfer velocity 
by taking the average of CC98 and a highly simplified 
version of the R12 model. In our dataset, this would return 
a k value at the lower end of the range presented by all 6 
gas flux models, regardless of lake size. Considering this, 
lakes worldwide may emit more carbon (C) than the 
estimated 0.3 Pg yr−1 (Raymond et al. 2013). 

We found that hourly values for k were substantially 
different between models and, at an annual scale, resulted 
in significantly different estimates of lake metabolism 
and gas exchange with the atmosphere. Ensemble 
modeling of gas exchange may provide a means of gener-
alizing k in situations where the model is not calibrated to 
the lake. Lakes are major processing and storage sites for 
organic carbon (Tranvik et al. 2009, Raymond et al. 
2013); thus, constraining uncertainties in NEP and 
determining whether lakes are net autotrophic or hetero-
trophic and quantifying the resulting implications 
regarding organic carbon loads to lakes is a high priority 
for future research.
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