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Abstract.—Studies have documented reduced growth of salmon in response to com-
petition with conspecific salmon and with other salmon species during early and late 
marine life stages. However, key questions remain as to whether density-dependent 
growth translates to reduced survival of salmon at sea and whether changes in ocean 
regimes, similar to that of 1976/1977, can alter this relationship. These questions are 
particularly important with respect to annual releases of numerous hatchery salmonids 
into the ocean. Few studies have tested these questions because the capacity of the 
ocean to support salmon is dynamic and reduced growth in Pacific salmon is often as-
sociated with great abundance of smaller fish which infers a higher overall survival rate, 
thereby confounding traditional statistical fisheries harvest modeling efforts. We review 
evidence from several recent studies suggesting that, when the density-dependent effect 
on growth at sea is large, salmon survival is lower with lower reproductive potential from 
survivors, and that the salmon carrying capacity of the ocean is influenced by climate 
change. We conclude that salmon growth and survival responses to oceanic changes can 
vary with season and life stage and that density-dependent growth at sea is an impor-
tant, yet often elusive, mechanism affecting salmon survival. Pacific salmon life history 
models should account for these relationships.

 
Introduction

Impacts of climate change on salmonid 
fishes have been characterized in recent de-
cades by their significant effects on interre-
lated biological and physical relationships 
including growth, survival, and abundance of 
salmon in the North Pacific Ocean. Transitions 
from one climatic state to another are called 
regime shifts, and there is significant litera-
ture linking such shifts in ocean condition to 

the distribution and abundance of aquatic or-
ganisms (Francis et al. 1998; Anderson and 
Piatt 1999; Hare and Mantua 2000 and 2001; 
Welch et al. 2000; Benson and Trites 2002; 
Clark and Hare 2002; Zamon and Welch 
2005). There is still controversy on the true 
nature of “regime shift” in the North Pacific 
Ocean even though there is substantial sup-
port for regime-like behavior in these marine 
ecosystems (Hsieh et al. 2005; Mangel and 
Levin 2005). Pacific salmon in marine envi-
ronments have faced changes in sea surface 
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temperature and ocean condition associated 
with shifts in the Pacific Decadal Oscillation 
(PDO), Arctic Oscillation Index, and the El 
Nino-Southern Oscillation (ENSO) (Mantua 
et al. 1997; Hare and Mantua 2000; Minobe 
2000). A well-documented climatic regime 
shift altered conditions in the North Pacific 
Ocean in 1976–1977 (Minobe 1997). A less 
pervasive regime shift occurred again in 
1989 (Hare and Mantua 2000). Ocean condi-
tions can significantly affect salmon growth 
and survival (Holtby et al. 1990; Friedland 
1998; Beamish et al. 2004). Abundances of 
all species of Pacific salmon in the North 
Pacific Ocean and the Bering Sea increased 
after the marine climate shift during the mid-
1970s (Figure 1; Rogers 1984; Beamish and 
Bouillon 1993; Hare et al. 1999; Mueter et al. 
2007). Salmon production in the period from 
1951 to 1976 averaged approximately 280 
million salmon per year; after the mid-1970s 
climate shift, adult runs nearly doubled to 

approximately 520 million salmon per year 
(Rogers 2001; Eggers et al. 2005). Hatchery 
production of Pacific salmon also increased 
dramatically during this period contributing 
to confounding impacts among species, pop-
ulations at sea, and recruitment (Beamish and 
Noakes 2002; Orsi et al. 2004; Ruggerone 
and Goetz 2004; Beamish et al. 2004; Spies 
et al. 2007).

Salmon from different regions or con-
tinents of origin can overlap at their ocean 
feeding grounds in the North Pacific Ocean, 
but the extent of overlap among species is not 
easily determined (McKinnell 1995; Myers 
et al. 1996). Density-dependent growth has 
been observed in Pacific salmon (Peterman 
1984; Rogers and Ruggerone 1993; Bigler et 
al. 1996). Competition for limited resources 
in marine habitats has been recognized as an 
important factor in growth of Pacific salmon 
at sea (McKinnell 1995; Ishida et al. 2002; 
Ruggerone and Nielsen 2004; Holt and Peter-
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Figure 1. World salmon run size 1951–2001 (adapted with permission from Rogers 2001).
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man 2004). Over the last quarter century, the 
apparent abundance of salmon in the ocean 
has doubled with a large component of that 
productivity based on artificial propagation 
from hatcheries with approximately 5 bil-
lion salmon fry released annually into the Pa-
cific Ocean (Mahnken et al. 1998). In Japan, 
hatchery release programs for pink salmon 
have been credited with a significant increase 
in the Japanese commercial salmon harvest 
at sea (Hiroi 1998; Kaeriyama 1999), but 
Morita et al. (2006b) question their benefits 
in relation to loss of wild salmon production.

The ability of natural ocean systems to 
sustain large numbers of fish and the concept 
of an ocean carrying capacity for salmon re-
mains controversial (Shuntov and Temnykh 
2005). However, few studies have looked at 
the actual increase in net population growth 
for adult salmon at sea when the effects of 
density dependence and climate change are 
taken into account (Hilborn 1999; Morita et 
al. 2006a). Environmental and oceanic con-
ditions at various sea-ages have been corre-
lated with patterns in growth and survival in 
juvenile salmon (Mason 1974, Holtby et al. 
1990; Pearcy 1992; Farley et al. 2007) and in 
later marine life stages where growth-related 
mortality appears less important (Rogers and 
Ruggerone 1993; Ruggerone et al. 2003).

Several life history models have been 
published on the impacts of climate change 
on marine species (Giske et al. 1992; Nonacs 
et al. 1994; Mangel 1994; Hilborn and Man-
gel 1997; Tian et al. 2004). Although many 
excellent papers have associated variation in 
Pacific salmon growth and abundance with 
climate change (Mantua et al. 1997; Hare et 
al. 1999; Beamish et al. 1999 and 2000; Wells 
et al. 2005), few have directly focused on the 
implications of a changing marine environ-
ment on salmon life history characteristics. 
Climate change may influence the impor-
tant trade off between somatic growth and 
reproductive investment since salmonid life 
history variation is a trade off between the 

optimal allocation of resources to maximize 
growth during early life stages and facilitate 
reproduction in later life stages (Fleming and 
Gross 1989; Thorpe 1990). Marine growth 
has been associated with age-at-maturity in 
Pacific salmon (Bigler et al. 1996; Pyper and 
Peterman 1999; Pyper et al. 1999; Morita et 
al. 2005). Older, maturing salmon are usu-
ally larger adults (Friedland and Haas 1996; 
McGurk 1996: Hobday and Boehlert 2001); 
fish size has been directly correlated with egg 
number and size (Fleming and Gross 1990; 
Mangel 1994; Quinn et al. 2004) and repro-
ductive success (Gross 1991; Beacham and 
Murry 1993; Quinn et al. 1995). Therefore, 
salmon that are impacted by climate variation 
and/or density-dependent factors, leading to 
reductions in growth and development, may 
lose individual reproductive potential despite 
increases in total abundance. In this paper we 
review 1) the productivity-climate change 
relationship documented for salmon in the 
North Pacific Ocean in relation to growth-at-
sea for different life stages, and 2) the effects 
of the mid-1970s regime shift on salmon 
growth and abundance. We explore potential 
causes of density-dependent salmon growth 
in marine habitats and discuss the implica-
tions that reduction of growth-at-sea may 
have on life history trade offs.

 
Early Growth and Movements at 

Sea

Anadromous Pacific salmon typically 
spend 1–5 years at sea where the majority 
of their growth and development takes place 
(Groot and Margolis 1991). Some salmon mi-
grate over great distances to feed in the ocean 
while others remain relatively close to shore 
during their whole ocean cycle (Quinn and 
Myers 2005). Survival during the first year 
at sea is most difficult for Pacific salmon, 
and growth and survival appear to be linked 
(Pearcy 1992; Beamish and Mahnken 2001; 
Farley et al. 2005, 2007). During their early 
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weeks at sea, growth-mediated survival may 
define year-to-year variability and patterns 
of recruitment in salmon populations (Fried-
land 1998; Welch et al. 2000; Beamish and 
Mahnken 2001).

Physiological adaptation to the marine 
environment, the need to discover previous-
ly unknown food resources, and a gauntlet 
of active predators take their toll on young 
marine salmon. Changes in climate can af-
fect survival during any of these activities. 
Although salmon species have feeding ten-
dencies, salmon select a variety of prey at 
different life stages which may represent sev-
eral trophic levels (Kaeriyama et al. 2004). 
Significant changes in chlorophyll and zoo-
plankton abundance and distribution have 
been associated with patterns of climate 
change (Napp and Hunt 2001; Gregg 2002; 
Zamon and Welch 2005). Major zooplankton 
assemblages have shifted their composition 
since the early 1990s (Kang et al. 2002). Re-
cent increases in gelatinous zooplankton in 
the Bering Sea have been linked to climate 
change (Brodeur et al. 1999). Anomalous 
blooms of coccolithophores Emiliania huxeyi 
in the Bering Sea have been suggested as dis-
ruptive ecosystem components affecting the 
distribution and abundance of marine fauna 
(Napp and Hunt 2001). Large oceanographic 
models such as PICES’ Carrying Capacity 
and Climate Change BAsin Scale Studies 
(CCCC BASS; Aydin et al. 2003) have been 
developed to facilitate understanding of the 
impacts of climate change and climate vari-
ability on physical and lower trophic level 
biological processes in the North Pacific 
Ocean, but these models are not yet connect-
ed to upper trophic level fishes. Also, in some 
regions, such as the Bering Sea, the mid-
1970s climate shift did not lead to a signifi-
cant change in zooplankton biomass (Napp et 
al. 2002).

Significant changes in the distribution 
and abundance of predators such as marine 
birds, sea lions, baleen whales, walleye pol-

lock, and Pacific salmon have recently been 
recorded in the eastern Bering Sea, most like-
ly linked to changes in the availability of dif-
ferent prey (Merrick 1997; Hunt et al. 2002). 
Empirical data show that ocean regime shifts 
influence the composition and productivity of 
both higher and lower tropic levels in marine 
habitats (Francis and Hare 1994; Francis et al. 
1998; Anderson and Piatt 1999; Gregg 2002). 
Our own studies indicate that sockeye growth 
during their first two years at sea tended to be 
greater after the mid-1970s (Ruggerone et al. 
2005). Greater growth in the first year at sea 
was most pronounced in salmon from Bris-
tol Bay which occupy the Bering Sea, while 
growth in the second year at sea was greatest 
in salmon from the Chignik River which in-
habit the North Pacific Ocean (Figure 2).

Mechanisms supporting marine growth 
and survival for young salmon are poorly 
understood in part because stock-specific 
salmon distributions span exceptionally 
broad areas that include multiple ocean habi-
tats. Therefore, it is understandable that the 
concept of a food competition-related ocean 
carrying capacity has long been controversial 
(Cushing 1975; Joyner 1975; Aydin 2000; 
Azumaya and Ishida 2000; Achord et al. 
2003; Ruggerone and Nielsen 2004; Shuntov 
and Temnykh 2005). Evidence is growing 
that greater prey availability during early 
marine life of salmon contributed to greater 
salmon abundance following the 1977 regime 
shift in the North Pacific Ocean (Brodeur and 
Ware 1992; Ruggerone et al. 2005). In Puget 
Sound, salmon prey availability was greater 
prior to the 1982/83 El Niño. The 1982/83 
El Niño and subsequent events appeared to 
reduce prey abundance, thereby enhancing 
competition between juvenile pink salmon 
Oncorhynchus gorbuscha and juvenile Chi-
nook salmon O. tshawytscha, which expe-
rienced significantly reduced growth and a 
62% reduction in survival when pink salmon 
were present during 1984–1997 (Ruggerone 
and Goetz 2004).
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Figure 2. Trends in sockeye salmon O. nerka scale growth 1952–2002 in: a. Bristol Bay 
sockeye and b. Chignik River sockeye populations (with permission Ruggerone et al. 2007). 
Growth is normalized to the population mean.
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Figure 2. Continued.
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Most studies of early-marine salmon re-
sponses to climate change have focused on 
bottom-up control of salmon abundance. 
However, some evidence suggests predation 
by salmon sharks Lamna ditropis, North Pa-
cific daggertooth Anotopterus nikparini and 
other predators may influence juvenile salm-
on abundance in oceanic habitats (Welch et 
al. 1991; Yodzis 2001; Nagasawa 1998). 
Beamish and Neville (1995) reported that 
river lamprey Lampetra ayresii attack and 
kill a significant portion of Chinook and coho 
salmon O. kisutch in the Fraser River plume. 
In Puget Sound, abundances of most salmon 
predators were much greater prior to the series 
of El Nino events beginning in 1982/83 and 
predation rather than competition appeared 
to be the primary mechanism of mortality af-
fecting Chinook salmon during 1972–1983 
(Ruggerone and Goetz 2004). Changes in 
salmon predator abundances in the North Pa-
cific Ocean have not been directly linked to 
climate change, although salmon shark abun-
dance increased sharply in 1996 and thereaf-
ter compared with 1984 to 1993 (Nagasawa 
et al. 2002). Size-dependent predation has 
been suggested as a key mechanism linking 
climate change and salmon growth to salm-
on survival and abundance, but few data are 
available on size-dependent predation after 
salmon leave nearshore marine areas (Holtby 
et al. 1990). Ultimately, the relative impor-
tance of mechanisms leading to mortality 
of salmon at sea, such as predation, delayed 
density-dependent effects, starvation, or dis-
ease, are rarely quantified.

 
Salmon Maturation at Sea

Life at sea for anadromous salmonids 
serves two purposes—one to grow rapidly 
and survive in marine habitats; the other to 
develop gonadal material for reproduction. 
Aquaculture has provided a large literature on 
the growth/reproductive trade offs measured 
in terms of the gonosomatic index (GSI) nec-

essary for salmonid reproduction (Hoar et al. 
1983). In general, age at maturity in Pacific 
salmon has been linked to marine growth 
with faster growing progeny generally matur-
ing at younger ages (Hankin et al. 1993; Mc-
Garvey et al. 2007). Somatic growth rates in 
apparently similar individuals, however, of-
ten vary widely producing dynamic effects in 
reproductive potential (Sebens 1987; Bacon 
et al. 2005). At a specific point in adult devel-
opment, most energetic inputs cease to con-
tribute to somatic growth and, instead, begin 
to contribute to reproductive development. 
However, the turning point in the trade off 
between these two physiological processes 
has not been well described for adult Pacific 
salmon at sea. A smooth progression through 
reproductive cycles at sea depends on the 
continuing interplay between an individual 
endrocrine system and the environment (Lam 
1983). We can therefore assume that hormon-
al, environmental, and behavioral aspects of 
salmonid gametogenesis may be influenced 
by climate change.

Photoperiod and/or temperature are gen-
erally recognized as the most important cues 
in the timing of gametogenesis in temper-
ate fishes. Typically, oocytes progress into 
early vitellogenesis when a fish is exposed to 
low temperatures and short photoperiod, but 
warmer temperatures are required for final 
oocyte maturation and spawning (Scott 1990). 
In addition to temperature cues, the primary 
growth phase of oocytes in salmonid females, 
i.e. yolk vesicle formation and endogenous 
vitellogenesis, requires significant exogenous 
input of energy for lipid development. Viable 
salmon eggs contain over 80% lipid stores in 
the form of yoke material (Lam 1983). Gonad-
al development in marine environments—in 
females particularly—requires significant en-
ergy which in turn is linked to the availability 
and quality of food at sea (Aydin 2000).

Neutral lipids (as opposed to cellular or 
polar lipids) are used by salmon as an energy 
source while at sea (Davis et al. 1998; Nomu-
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ra et al. 1999; Myers et al. 2000). Lipid levels 
can vary from 3% to 23% during spring and 
summer in chum and pink salmon (Nomura 
et al. 2000), and significant differences in lip-
id levels have been found between younger 
(lower) and older (higher) chum salmon white 
muscle tissues (Nomura et al. 2001). Lipid-
rich squid provide an important resource for 
salmon at sea (Lordan et al. 1998; Yatsu et al. 
2000; Davis et al. 2001). Changes in lower 
trophic levels, i.e. zooplankton biomass and 
composition, have been positively associated 
with squid production (Nesis 1997; Kang et 

al. 2002). Therefore, we speculate that varia-
tion in bottom-up ocean conditions result-
ing from climate change (Brodeur and Ware 
1992; Sakurai et al. 2000) may have a sig-
nificant effect on salmonid development and 
subsequent reproductive success.

We examined age at maturation of Bris-
tol Bay salmon in relation to climate shifts 
during 1952 to 1998. Total age at maturation 
of westside and eastside Bristol Bay sockeye 
salmon stocks remained relatively constant 
throughout three climate regimes (Figure 
3, bottom panel). However, the number of 
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Figure 3. Freshwater and marine age composition and total mean age of eastside and west-
side Bristol Bay sockeye salmon O. nerka stocks during three climate regimes, 1952–1998. 
Values are mean ± 1 SE (with permission Ruggerone and Link 2006).
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years spent in freshwater versus marine ar-
eas changed markedly between each regime, 
except for westside stocks during the recent 
1989 climate shift. Among eastside sockeye 
salmon stocks, the percentage of freshwa-
ter age 1 (1.x) and ocean age 3 (x.3) salmon 
increased over time and during each regime 
(Ruggerone and Link 2006). Reduced salm-
on residence time in freshwater (in likely re-
sponse to increasing temperature during the 
past 45 years) was associated with increased 
time in the ocean, leading to little change in 
total age at maturation (Peterman et al. 2003; 
Ruggerone and Link 2006). Thus, Bristol Bay 
sockeye salmon have tended to experience a 
relatively fixed age at maturation, which is 
achieved through trade offs of residence in 
freshwater versus marine environments (Rog-
ers 1987). Warming temperatures can have a 
marked effect on residence in lakes and the 
ocean, especially among populations such as 
those on the eastside of Bristol Bay where 
fish formerly tended to spend two winters in 
freshwater and two winters at sea. Changes in 
the ocean age may affect reproductive poten-
tial and success of salmon through changes in 
fecundity or by affecting the ability of salm-
on to successfully spawn in habitats where 
size affects reproductive success, e.g., large 
rivers, shallow creeks, and areas with size-
dependent predation by bears.

 
Climate Change and Late Ocean 

Life Stages

Marine fish populations have been shown 
to be responsive to climate variability with 
strong regional and local patterns (Mueter et 
al. 2002; McGinn 2002 and literature there-
in). Since adult salmon at sea are influenced 
by climate on multiple temporal and spatial 
scales, it is important to link questions and 
data to the same scale. Climate drivers have 
large-scale regional footprints. Data collect-
ed from sediments in sockeye-bearing lakes 
suggest that climate and salmon runs may 

have a long correlated history (Finney et al. 
2000). Several studies have shown that the 
distribution and abundance of anadromous 
salmon returning to freshwater to spawn 
are vulnerable to the influences of climate 
change on a more local scale (Beamish and 
Bouillon 1993; Clark and Hare 2002; Meu-
ter et al. 2002; Beamish et al. 2004; Pyper et 
al. 2005). Changes in ocean temperature may 
affect the migration timing and behavior of 
locally adapted spawning stocks (Bernatchez 
and Dodson 1987; Hodgson and Quinn 2002; 
Ruggerone 2004). However, inter-decadal 
and even shorter patterns in climate varia-
tion have had associated fisheries impacts 
(McGinn 2002).

Several recent climate simulation models 
and empirical models predicted a phase shift 
in fisheries productivity from northern to 
southern Pacific Ocean habitats based on cy-
clical climatic fluctuations (Francis and Sib-
ley 1991; Peterson et al. 1993; Peterman et al. 
1998; Francis et al. 1998; Anderson and Piatt 
1999; Hare and Mantua 2001; Botsford et al. 
2002). Under this concept, salmon in north-
ern British Columbia and Alaska are thought 
to be on an alternate trajectory of abundance 
compared with southern stocks (Hare et al. 
1999; Pyper and Peterman 1999). Further-
more, productivity of salmon populations 
tends to be more correlated among nearby 
compared with distant stocks, implying that 
regional climate affects salmon populations 
in addition to large-scale effects (Pyper et al. 
2005).

Although large scale and regional ocean-
ographic features are important to salmon 
production, the interactions between species 
originating from distant regions is also im-
portant. For example, multivariate time series 
analyses indicated that Bristol Bay sockeye 
growth during the second year at sea was neg-
atively related to abundance of Eastern Kam-
chatka pink salmon and positively related to 
winter sea-surface temperature in the North 
Pacific Ocean (Ruggerone and Nielsen 2004). 
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Additionally, McKinnell (1995) reported that 
growth of northern British Columbia sockeye 
salmon during their last year at sea may be 
negatively influenced by abundance of Bris-
tol Bay sockeye salmon.

Fisheries harvest data supporting nega-
tive sockeye growth at sea in relationship to 
abundance, however, remain controversial. A 
PDO phase shift thought to contribute to this 
effect was documented in 1998, but recent re-
cruitment to Pacific salmon stocks in different 
geographic regions has been mixed (Beamish 
et al. 2004). Significantly larger runs of 
salmon have been reported in recent years 
in some Pacific Northwest rivers, but not in 
others (Keefer et al. 2004). Salmon in Alaska 
have also experienced variable productivity 
with declines in some Bristol Bay stocks, but 
not in other geographically proximate rivers 
(Ruggerone and Nielsen 2004; Ruggerone 
and Link 2006). Local variations in natural 
productivity or effects of fisheries are likely 
superimposed on broad-scale, climate-driven 
production variations. Little data are available 
for salmon growth at sea throughout each life 
stage. Our studies concluded that Bristol Bay 
and Chignik River sockeye salmon O. nerka 
growth declined during their third year at sea 
and during their homeward migration after 
the mid-1970s (Ruggerone et al. 2007). Re-
duced growth during their third year at sea 
was especially great during odd-numbered 
years when Asian pink salmon were most 
abundant (see below).

Local, fine-scale environmental condi-
tions in both near-shore marine and freshwater 
outflow habitats may play an important role 
in the climate-salmon relationship (Mueter et 
al. 2002). Global change effects may impact 
estuarine migration patterns and oxygen con-
sumption requirements for migrating salmon 
(Stevenson et al. 2002; Roessig et al. 2004). 
Additional research is needed on salmon life 
histories at the freshwater-marine interface 
during upstream and downstream migrations 
under different patterns of climate change.

 

Climate Change and Population 
Distribution

The most abundant North American sal-
monid populations in the Pacific Ocean are 
thought to have colonized freshwater habitats 
from more southern refugia populations since 
the end of the last ice cover, less than 10,000 
years before present (Macdougall 2004). 
Warming climate may increase or accelerate 
the movement of aquatic species including 
spawning salmon populations further north 
(Welch et al. 1998; Rahel 2002; Roessig et al. 
2004; Perry et al. 2005; Wing 2006). All five 
Pacific salmon species have been recently re-
ported in previously unoccupied riverine habi-
tats in the Canadian arctic (Babluk et al. 2000; 
Beamish and Noakes 2002). Incidental reports 
of coho, pink and chum salmon O. keta are 
available from rivers draining into the North 
Bering and Chukchi seas in Alaska, north of 
the current limits of each species’ range (Craig 
and Haldorson 1986; Beamish and Noakes 
2002). In 2004 and 2005, unprecedented num-
bers of pink salmon returned to the Norton 
Sound region, apparently in response to warm 
ocean temperatures in recent years (G. San-
done, Alaska Department of Fish and Game, 
personal communication) and the most north-
erly sockeye population in Port Clarence has 
expanded dramatically over the past five years 
(E. Knudsen, C. Lean, K. Dunmall and G. 
Sandone, personal communications). Natural 
colonization of novel habitats by Pacific salm-
on has been facilitated in Alaska by glacial re-
treat (Milner et al. 2000). Novel colonizations 
of new glacial streams have resulted in highly 
variable ecosystem structure and research has 
shown that colonization pathways can differ 
significantly across ecosystems (Milner and 
Bailey 1989; Burger et al. 2000; Milner et al. 
2000; Pavey 2004; Quinn and Myers 2005). 
There is a clear need to study shifts in life his-
tory characteristics of salmon in relation to cli-
mate change and colonization of new habitats 
(Field and Francis 2002; Pavey 2004).

 



11Growth and Survival of Pacific Salmon at Sea

Asian Pink Salmon Affect Sockeye 
Growth and Survival at Sea

The mechanisms linking Pacific salm-
on growth and abundance in the ocean and 
climate change are very complex and often 
nonintuitive since most salmonid literature 
has focused on the freshwater phase of these 
fish. One aspect of the overall productiv-
ity for salmon at sea has clearly increased 
extensively over the last three decades, ar-
tificial propagation and release of hatchery 
fish into marine habitats. Salmon hatcheries 
across the North Pacific Ocean, in the U.S., 
Canada, and throughout Asia, release up to 
five billion salmon a year (Mahnken et al. 
1998). Natural salmon production in wild 
riverine habitats, such as the Kamchatka Pen-
insula, has also increased substantially over 
the last three decades (Sinyakov 1998). Dif-
ferentiation of hatchery and wild fish at sea 
is sometimes problematic since not all hatch-
ery fish are marked at their hatchery of ori-

gin (Heard 1998). Interactions between wild 
and hatchery-produced salmon at sea have 
only recently been studied (Levin et al. 2001; 
Orsi et al. 2004; Wertheimer et al. 2004). 
However, the rapid increase in hatchery and 
wild salmon abundance in the North Pacific 
Ocean following the 1977 regime shift led to 
food limitations with intra-specific (Rogers 
and Ruggerone 1993; Bigler et al. 1996) and 
nonlinear inter-specific effects (Burkett et al. 
2005) on salmon growth.

In northern latitudes where wild salmon 
have been especially abundant, the 1976/1977 
regime shift appeared to enhance growth 
and survival of salmon during early marine 
stages, leading to density-dependent effects 
during older stages when survival is less in-
fluenced by growth (Ruggerone et al. 2002, 
2007). During 1958–1999, annual growth of 
Bristol Bay sockeye salmon was low during 
odd-numbered years of the second and third 
years at sea (Figure 2), a pattern that was op-
posite from that of Asian pink salmon abun-

Figure 4. Seasonal growth at sea of Bristol Bay sockeye salmon during odd- and even-num-
bered years, based on circuli measurements from adult scales (with permission Ruggerone 
et al. 2005).
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dance (Ruggerone et al. 2003). Competition 
with pink salmon occurred after peak sockeye 
growth in spring (Figure 4). The effect of com-
petition on sockeye salmon growth appeared 
to transcend the 1976/1977 ocean regime shift 
because both salmon species responded simi-
larly to the large scale climate change and in-
creased over time (Ruggerone et al. 2005). No 
competition was detected during the first year 
at sea when there was little or no overlap with 
Asian pink salmon. First year competition 
may not be expressed in growth if all smaller 
fish died during their first year at sea (Farley 
et al. 2007). Interspecific competition was 
also not evident in the homeward migration 
of sockeye salmon when there was no overlap 
with Asian pink salmon.

Adult Bristol Bay sockeye length de-
creased in years with large Bristol Bay sock-
eye runs and in years following large Asian 
salmon runs indicative of density-dependent 
growth (Ruggerone et al. 2003). Sockeye 
salmon lengths in Bristol Bay stocks were 
greater in 1977–2000 compared to 1958–
1976 at a given abundance of adult sockeye 
and pink salmon (Figure 5). However, recent 
evidence indicates the mid-1970s and 1989 
climate shifts affected sockeye salmon size 
at age in addition to inter- and intraspecific 
competition (Ruggerone et al. 2007). The 
decline in size at age of Bristol Bay sockeye 
salmon after the 1989 climate shift may have 
reduced individual reproductive success of 
ocean age-2 sockeye salmon and contributed 
to the observed decline in productivity of 
stocks associated with a high proportion of 
ocean age-2 sockeye salmon (Ruggerone and 
Link 2006).

Recent research on species interactions 
in the ocean has provided evidence that 
competition can lead to reduced survival of 
salmon. During 1977–1997, sockeye salmon 
smolts from Bristol Bay, Alaska, experienced 
26–45% lower survival at sea when migrat-
ing during even-numbered years and compet-
ing with Asian pink salmon (Ruggerone et 

al. 2003). Age-1 smolts experienced greater 
mortality compared with age-2 smolts. Adult 
returns from even-year smolt migrations 
were 22% lower, on average, leading to 482 
million fewer adult sockeye salmon produced 
by smolts during 1977–1997 (Ruggerone and 
Nielsen 2004). Prior to the 1976–1977 ocean 
regime shift, scale growth of sockeye salm-
on was reduced during years of great pink 
salmon abundance but a reduction in sockeye 
salmon abundance was not detected, possibly 
because the high seas salmon fishery captured 
many Bristol Bay sockeye salmon.

In the Pacific Northwest, an analysis of 53 
million coded-wire-tagged Chinook salmon 
demonstrated that juvenile Chinook salmon 
survival declined 62% when entering Puget 
Sound and lower Strait of Georgia in even-
numbered years along with the large migra-
tion of juvenile pink salmon, 1984–1997 
(Ruggerone and Goetz 2004). No odd-even 
pattern of survival was detected among Chi-
nook salmon released in coastal areas where 
few pink salmon originate. Coastal data and 
age-specific adult recoveries of Puget Sound 
Chinook salmon indicated that mortality oc-
curred in Puget Sound and the lower Strait of 
Georgia during the first year at sea. Growth 
of Chinook salmon was significantly reduced 
and age at maturation was extended when 
competing with pink salmon. During 1972–
1982, the odd-even year pattern of survival 
was reversed. The authors provided evidence 
that the mechanism of Chinook salmon mor-
tality switched from primarily predation to 
competition in response to climate change 
and associated declines in piscivores and prey 
availability and an increase in pink salmon 
abundance.

 
Summary

Environmental change in critical marine 
habitats has had a significant impact on sal-
monid populations throughout the Pacific 
Rim. This review of studies exploring ocean 
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condition and physical forces that shape the 
North Pacific system showed significant rela-
tionships with salmon growth and productiv-
ity. However, the effects of climate change on 
other life history traits, such as age at matu-
ration and fecundity, have not been well-
documented and impacts of ocean regime 
change on community ecology are even less 
well known (see Mangel and Levin 2005). 
Anadromous salmonids demonstrate diverse 

behavior in their passage through coastal and 
marine habitats with important physiological 
trade offs required for survival and repro-
duction during these transits. Our research 
has shown that density-dependent growth in 
sockeye salmon varies with life stage and 
season. These patterns in marine growth can 
be associated with climate change and den-
sity-dependent factors that are both natural 
and human-induced. Greater abundance and 
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Figure 5. Regression-corrected plots of adult, age 1.3, female, Bristol Bay, sockeye salmon 
O. nerka lengths in relation to adult abundance of Bristol Bay sockeye salmon (A) and Asian 
pink salmon abundance during the previous year (B). Salmon lengths are partial residuals 
based on the following multivariate equation (adapted with permission Ruggerone et al. 
2003):

Length (mm) = 571.7 – 0.0339 (sockeye run) – 0.067 (pink run) + 8.76 (period); r2 = 0.059, 
where period is coded as “1” after the 1976/1977 regime shift or “0” prior to 1977.



14   Nielsen and Ruggerone

productivity of Alaskan salmon following 
the 1976/77 ocean regime shift was associ-
ated with greater salmon growth during the 
first two years at sea. However, density-de-
pendent growth was significant at later life 
stages when growth-related mortality was 
less important and maturation and reproduc-
tion became primary functions affected by 
growth. Further research needs to be done 
on the relationship between growth-related 
changes in fecundity and maturity with total 
returns of North Pacific salmon in relation-
ship to climatic variation. Hatchery and wild 
pink salmon production in the North Pacific 
Ocean has grown significantly following the 
1976/77 regime shift. Our research suggests 
that greater pink salmon abundance has af-
fected growth, survival, and abundance of 
Bristol Bay sockeye salmon over the last 
several decades. Salmon life history models 
developed for this time of dynamic ocean 
and climatic conditions should not ignore 
density-dependent growth at sea when mod-
eling the often elusive mechanisms affecting 
salmon survival.
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