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In Memoriam: Dr Gerald w.Garner, 1944 -1998 

Dr Gerald W. Gamer examines a darted polar bear before attaching a radio-transmitter, on the sea ice 
of the Chukchi Sea. (photo courtesy S.Schliebe.) 



· (1997) estimated 
iuals, with a coef­
',000. 

-recapture sampling 
Ecological Statistics 

ion on the trackline. 

[Imp ling; Estimating 

~e whale assessment 

ction probability as 
available from the 

2tions. Cambridge: 

:e of cetaceans. Rep. 

;ee, §8.3. Rep. into 

ttion for the double­
:al and Environmen-

3ampling techniques 
tatistics 2:230-242. 

lale survey in 1995. 

hale survey in 1995. 

Ie type estimates of 
17-399. 
ance of northeastern 
mn 47:453-484. 

elihood methods for 

ith independent ob-

~ce using Simulation 

Marine Mammal Survey and Assessment Methods, Garner et al. (eds) 
© 1999 Balkema, Rotterdam, ISBN 90 5809 0434 

Modeling variability in replicated surveys at aggregation sites 

M.S.Udevitz 
USGS, Alaska Biological Science Center, Anchorage, Alaska, USA 

ABSTRACT: Surveys of aggregation sites can provide unbiased estimates of annual trends in 
population size if the proportion of the population counted at these sites does not vary systematically 
among years. However, counts at these sites tend to be highly variable and resulting trend estimates 
typically have poor precision. I developed an index based on a simple parametric model for counts 
of Pacific walruses (Odobenus rosmarus divergens) at haul-out sites in Bristol Bay, Alaska that 
accounted for the general temporal pattern of variability in the proportion of the population at the 
sites. Simulations suggested that an index based on mean annual counts was a more sensitive 
indicator of trend than the model-based index or the currently used index based on maximum annual 
counts. The model-based index may be more useful for other situations where timing of the 
aggregation peak is more variable. 

Keywords: adjusted count, aggregation, availability bias, haul-out, model, monitor, Odobenus 
rosmarus, power, survey, time series, trend, walrus 

1 INTRODUCTION 

Many wildlife species form large aggregations at predictable locations in time and space and counts 
of individuals at these sites have often been used as a basis for monitoring populations. For 
example, various species of birds have been monitored at sites where they aggregate in winter 
(Eggeman & Johnson 1989) or during migration (Titus & Fuller 1990, Pyle et al. 1994). Brown 
bears have been monitored along streams where they aggregate to feed on spawning sahnon (Barnes 
et al. 1995). Manatees have been monitored at warm-water springs and discharge sites where they 
aggregate in winter (Gahott et al. 1994). Pinniped populations have been monitored where they 
aggregate at haul-out or breeding areas (Eberhardt et al. 1979, Thompson & Harwood 1990). 
Aggregation sites offer the opportunity to observe potentially large portions of populations that 
might not be easily detected elsewhere because of low density, inaccessibility, or low detectability 
(Hussell1981). However, the utility of counts from these sites is limited because they do not 
comprise a probability-based sample (Eggeman et al. 1997). Also, the proportion ofthe population 
that is at these sites during any given survey can be highly variable and is usually unknown 
(Eberhardt et al. 1979, Mansfield & St. Aubin 1991). 

Surveys of aggregation sites can provide unbiased estimates of annual trends in population size 
if the proportion of the population counted at these sites does not vary systematically among years 
(Hussell1981, Titus & Fuller 1990, Pyle etal. 1994). However, even in the absence of systematic 
variation in this proportion, random variation can be high and resulting trend estimates typically 
have poor precision. In some cases, it may be possible to identify factors affecting the proportion 
counted and then adjust counts for these factors by modeling them as covariates (Hussell 1981, 
Myers & Bowen 1989, Thompson & Harwood 1990, Garrott et al. 1994, Pyle et al. 1994, Dunn 
et al. 1997). Adjusted counts can provide the basis for an index that is less subject to variation in 
the proportion counted and is, therefore, a more sensitive indicator of population trend. This paper 
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reports on an initial attempt to develop a simple model that accounts for some of the variation in the 
proportion counted and to use the model to improve trend estimates and evaluate monitoring designs 
for Pacific walruses (Odobenus rosmarus divergens) at haul-out sites in Bristol Bay, Alaska. 

The summer population of Pacific walruses in Bristol Bay has been monitored with daily counts 
at terrestrial haul-out sites where the animals aggregate (Wilson 1996). Most of the walrus 
population that winters in this region migrates north with the ice pack in spring (Fay 1982). 
However, thousands of mature males along with a few females and young remain in Bristol Bay 
where they use several traditional haul-out sites throughout summer and fall (Fay 1982). Walruses 
usually begin appearing at these haul-outs in Mayor June, reach peak numbers from July through 
September, and continue to use them through, at least, November (Fay 1982, Hills 1992). 
Individual walruses may follow patterns ranging up to 7-10 days at sea followed by 2-4 days at a 
haulout or they may make daily trips to sea and back from a haulout (Hills 1992). A single walrus 
may follow each of these patterns at different times. Movements of walruses on and off a haul-out 
may be synchronized to some extent (Taggart 1987). 

Counts of walruses at a haul-out site are highly variable, with numbers tending to build and then 
decline over periods of several days, forming a series of more or less distinct peaks during a season 
(Taggart 1987, Mansfield & St. Aubin 1991). Some of the variability in daily counts may be 
attributable to environmental factors. Factors related to disturbance (by humans or polar bears) , 
weather, tidal state, and time-of-day can affect haul-out behavior of walruses (Fay & Ray 1968, 
Salter 1979, Mansfield & St. Aubin 1991, Hills 1992) and other pinnipeds (Bartholomew & Wilke 
1956, Ray & Smith 1968, Ling et al. 1974, Schneider & Payne 1983). However, attempts to model 
counts of walruses at haul-outs as functions of these factors have explained only a small amount 
oftotal variation in counts (Salter 1979, Hills 1992). 

Annual trends in counts of walruses at Bristol Bay haul-out sites have been assessed primarily 
with informal comparisons of maximum daily counts from each year (Wilson 1996, Fay et al. 
1997). Alternative indices of population size and alternative monitoring designs have not been 
investigated. I considered daily count data from selected years and from a subset of the principal 
haul-out sites in Bristol Bay. My first objective was to develop a simple parametric model of the 
counts that reflected the general temporal pattern of variability in the proportion of the population 
at the sites but did not make any direct reference to environmental covariates. Changes in 
parameters of this model would correspond to changes in the pattern of variability. Given such a 
model, my second objective was to use the model to develop an index that would be less affected by 
changes in the pattern of variability. If the model adequately represented the pattern of variability 
and annual differences in this pattern were of sufficient magnitude, this index would be expected to 
provide a more sensitive estimate of trend than indices based on unadjusted counts. My final 
objective was to use the model as a basis for simulation to evaluate power for detecting trend with 
the model-based index versus more traditional design-based indices under a range of potential 
monitoring designs. 

2 METHODS 

2.1 Survey methods and data selection 

Cape Pierce and Round Island are the 2 principal haul-out areas used by walruses in Bristol Bay, 
Alaska (Wilson 1996). Each of these areas contains several disjunct beaches where walruses haul 
out. Cape Pierce has the advantage that traditional haul-out beaches are readily accessible and can 
be surveyed regardless of weather conditions. Togiak National Wildlife Refuge has maintained a 
seasonal field camp at Cape Pierce from about mid-April or May through September each year since 
1985. Refuge personnel stationed at the camp have attempted to make daily counts of walruses on 
all haul-out beaches. Methods have varied slightly from year to year, but in general, counting began 
between 0830 and 1030 each morning. Observers walked to specified viewing locations at each 
beach and used binoculars to count any walruses present. Counts included walruses hauled out on 
land as well as walruses in water near the haul-out. Multiple counts were usually made at each 
beach; extreme counts (e.g., counts that differed from the others by > 5% if there were 3 counts, or 
highest and lowest if there were ~ 4 counts) were discarded and remaining counts averaged. 
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I treated the complex of haul -outs at Cape Pierce as a single site and considered combined totals 
of the averaged daily counts from all haul-outs. I examined plots of these daily totals for 1986 
through 1991 field seasons. I selected for further consideration the 3 years (1986, 1989, and 1991) 
that appeared to have relatively continuous coverage from when walruses first began appearing'at 
haul-outs until the start of the period when haul-out use declined (Mazzone 1986, Jemison 1989, 
Jemison 1992). For each of these years, I used all daily totals, beginning with the first non-zero 
total after relatively continuous coverage began. 

2.2 Temporal availability model 

For any given haul-out (or set of haul-outs), we can define a population of walruses comprised of 
all those individuals that use the haul-out at least once during a given year. The expected number 
of individuals that will be hauled out at that site during the count at time t in year i is given by B( 1';t) 
= Ni Aib where Ni is the number of individuals that comprise the population using the site in year 
i and Ait is the probability that an individual from the population in year i will be on the haul-out at 
time t. 

I refer to Ait as the availability function. It gives the expected proportion of the population hauled 
out at the site at any given time. We carmot directly estimate the availability function from count 
data alone. However, if counts are proportional to the availability function, we can use count data 
to estimate a rate function (Garrott et al. 1994) that will be proportional to the availability function. 
If Rit is a rate function proportional to Ait, then B(1';t) = "Ili Rit , where "Ilj is proportional to Nj and is 
the expected value of the adjusted counts 1';t IRit. If differences in availability account for a 
sufficient portion of the variance in counts, the estimate of"llj will be less variable than unadjusted 
counts and therefore more sensitive to changes in population size. 

For the purpose of modeling haul-out data, I factored availability into 2 components. Let Ajt = 
Plit (P2it I Plit), where Plit is the probability that a walrus in the population has moved into Bristol 
Bay and begun using haul-outs by time t and P2jt l Plit is the conditional probability that a walrus will 
be on a Cape Pierce haul-out at time t, given that it has moved into Bristol Bay and begun using 
haul-outs. The pattern represented by Plit is one of increasing availability as walruses begin 
moving into the bay and using haul-outs in May and June, reaching a maximum during the July­
September period and then decreasing as walruses begin to leave in November. One of the simplest 
functions that follow this general pattern is a quadratic. I let the rate function corresponding to Plit 

beRlit = exp (-bi (cj - t)2) which is the exponential of a quadratic function that attains its maximum 
value (if bi > 0) at time t = Ci' ill this formulation, bi is a scale parameter that controls how quickly 
the maximum value is reached. Both b j and Cj are unknown parameters that must be estimated. 

P 2it I Plit represents movements on and off Cape Pierce by walruses that are in the area and using 
haul-outs. Without any data other than counts, I treated these movements as essentially random, 
with a correlation structure that represented the degree of synchrony. I let the rate function 
corresponding to P2it I Plit be 

R2it = exp( tdijln(Yi,t)) (1) 
rl 

which is an exponential of an order-n autoregressive function of the log-counts (Chatfield 1982). 
The number of terms (n) in the autoregressive function and the regression coefficients (dij) are all 
unkrrowns that must be estimated. Putting the pieces together and takil1g logarithms gives 

n 

E(ln(Yit» = a i - b/ci - t)2 + Ldi}n(Yi,t) 
]=1 

(2) 

where a j = In("Ilj) is the maximum of the expected log-counts adjusted for the portion of the 
movement on and off the haul-out that can be explained by autoregres5;ive terms. More precisely, 
a j is the maximum value that can be attained by . 

n 

E(ln(Yit» - Ldijln(Yj,t) 
rl 

(3) 
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and it represents the maximum of the underlying curve describing population movements into and 
out of Bristol Bay. The estimate of a i can serve as an index to population size. Model (2) is 
nonlinear in parameters bi and c;, but it can be reparameterized to giv: .. 

n 

E(ln(Yit» = ai + p/ + y/2 + Edijln(l';,t) 
rl 

(4) 

which is a standard, linear, autoregressive model of order n with quadratic trend that can be fit using 
standard regression software. After fitting (4), we can estimate the parameters in (2) as 

Gi 
= &i - P~ 

4Yi 
(5) 

bi -Yi (6) 

and 

ct 
-Pi 
2Yi 

(7) 

In the usual case where covariates are used to adjust counts (Hussell1981, Garrott et al. 1994), 
values of covariates change but the relation between counts and covariates is assumed to remain 
constant over time. Adjustments to counts remove variation due to annual differences in values of 
covariates by standardizing counts to a given value (usually the mean) of the covariates. In model 
(2), the covariate is time within year. There are essentially no annual differences in values of this 
covariate because counts are made every day over essentially the same time period each year. 
However, the pattern of availability over this time period may vary from year to year. For example, 
date of maximum availability or rate of increase to maximum availability may change from yea.t..to 
year, possibly due to variability in environmental factors. In the context of model (2), these types 
of changes would be reflected in changes to parameters bi and Ci . If estimates of parameters are 
allowed to vary among years, adjusted counts can account for differences in parameters as well as 
covariates. The index Gi can be thought of as the log-count, adjusted for annual differences in time 
of maximum availability and synchrony in movements on and off haul-outs. 

2.3 Model fitting and simulation 

Counts were transformed by adding 1 and taking logarithms. Model (4) was fit to the transformed 
counts for each year separately, starting without any autoregressive terms. Autoregressive terms 
were then successively added if the partial F-test for their addition was significant (a = 0.05) and 
Akaike's information criteria (AlC) was reduced (Chatfield 1982). After fitting all autoregressive 
terms, the quadratic term was removed if its partial F-test was not significant (a = 0.05) and its 
removal decreased Ale. Parameter estimates for model (2) were obtained from (5), (6), and (7). 
Standard errors for parameter estimates in (2) were obtained by refitting models with nonlinear 
regression and inverting the information matrix. Parameter estimates in (2) could also have been 
obtained directly with nonlinear regression. 

Data were simulated with model (2) for power analysis. The number of autoregressive terms was 
the maximum used in any of the final models for 1986, 1989, and 1991 data. Parameters bi and Ci 

were generated independently for each year as bivariate normal random variables. Autoregressive 
parameters dij; i = 1, "', n were generated independently for each year as multiv~ate normal random 
variables (with bounds of -1 < dij < 0, or 0 < dij < 1, depending on whether dij < 0 or de > 0). 
The pair of parameters bi and Ci was assumed to be independent of the set of parameters iv·, i = 1, 
"', n. Means, variances, and correlations of random parameters were taken to be the mean, variance 
and correlation of corresponding. parameter estimates from 1986, 1989 and 1991. Error variance 
was taken to be the mean of error variance estimates from 1986, 1989 and 1991. 
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The parameter a; was allowed to vary systematically over time to represent an exponential annual 
decrease in size of the population using haul-outs. Thus, a; = ao + (i - 1) In(l - r), where ao was the 
mean of a; estimates from 1986, 1989 and 1991 data and r was the exponential rate of decrease on 
the scale of original counts. Separate sets of simulations were conducted for values of r = 0.02; 
0.04,0.06,0.08, and 0.10. 

In each simulation, data were generated to represent aID-year monitoring period with daily 
connts during the. monitoring period each year. Separate sets of simulations were conducted for a 
134-day period (corresponding to mean start and end dates for 1986, 1989, and 1991 monitoring 
data), and 61-,31- and 15-day periods each centered on E(c;), the expected day of the maximum 
count. 

For each year of a 10-year simulation, I obtained the maximum log-count (m;) , the mean log­
count (12;) and ii j m ;and 12 ,are unadjusted, design-based indices of population size. ii ;is an 
adjusted index based on model (2). P-values for partial F-tests of slope coefficients were obtained 
from linear regressions of each index on year. Each simulation was repeated 1000 times. Power 
to detect trend at a given level of ex was estimated as the proportion of 1000 simulations with P s; 

ex. 
Additional sets of simulations were conducted with data generated as described above except that 

variances of random parameters were increased. Separate sets of' simulations were conducted with 
variances of all random parameters multiplied by factors of 2, 4, and 6. 

When data are generated according to model (2) with random parameters, the resulting counts 
can be negative. The probability of negative counts increases with variance of the random 
parameters. Therefore, simulations were repeated with data generated by a more realistic version 
of model (2) in which any generated counts that were < 0 were reset to O. 

3 RESULTS 

3.1 Modelfitting 

The model selection procedure resulted in second order, autoregressive models with quadratic trend 
for all 3 years (Table 1). Models appeared to fit reasonably well (Figure 1) and explain a 
substantial portion of variation in counts (R2 ~ 0.74, Table 1). Parameter estimates for the first 
autoregressive term were slightly greater than 1 in 1986 and 1991. This suggests that these series 
may not be stationary. Nonstationarity may be a result of quadratic terms not fully accounting for 
underlying trend, or a changing correlation structure (amount of synchrony in movements) over the 
monitoring period within these years. 

3.2 Simulation 

When data were generated according to model (2) with parameter variances as estimated from 1986, 
1989 and 1991 data (Table 1), power for m; was about the same as for ii; and both of these were less 
than power for 12; (Figure 2). However, power for ii; was only slightly reduced by increasing 
parameter variances. Power was greatly reduced for both m; and 12;, as parameter variance 
increased. Performance of ii; became superior to that of m; when variances were multiplied by 2 and 
superior to that of 12; when variances were multiplied by 4. Performance of 12; was superior to that 
of m; at all levels of parameter variance. 

When data were generated according to (2) with counts bounded at 0, power for 12; and m; 
remained about the same as when counts were not bounded (Figure 3). However, when counts were 
bounded, the model used to obtain ii; did not fit as well and power was reduced. In this case, power 
for ii; was also greatly reduced by increasing parameter variances and 12; had superior performance 
over the full range of variances I considered. 

Reductions in the monitoring period were critical to performance of the model-based index iii 
because shorter periods did not contain enough curvature to fit a quadratic model. Reduction of 
period length had much less effect on design-based indices. Performance of 12; was almost the same 
for a 6 I-day period as for a 134-day period (Figure 4), but further reductions resulted in more 
substantial losses of power. 
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Table 1. Annual estimates of parameters in model (2) for Cape Pierce haul-out data and mean values used for 
simulating haul-out counts. 

Estimate (SE) 

Parameter 1986 1989 1991 Mean (SD)" 

a, 2.81 2.12 3.00 2.64 
(0.46) (0.53) (0.44) (0.46) 

b, 0.00027 0.00020 0.00024 0.00023 
(0.00013) (0.00007) (0.00007) (0.00003) 

c, 246.29 236.37 235.42 239.36 
(12.01) (10.95) (10.04) (6.02) 

dil 1.10 0.75 1.02 0.96 
(0.08) (0.09) (0.08) (0.18) 

d'2 -0.49 -0.11 -0.46 -0.36 
(0.08) (0.10) (0.08) (0.21) 

0
2 1.86 1.09 0.85 1.26 

R2 0.74 0.78 0.82 

'SD of the 3 armual estimates. Correlations of the 3 annual estimates were 0.80 for a, and b" and -0.99 for dil and d,2. 

Power to detect a 10% annual increase with l1i was quite high (e.g., power = 0.96 for 134-day 
period at ex = 0.05), but that corresponds to a rather large population decrease of 61 % (on the 
original scale of counts) over the 10-year period. Power decreased rather quickly as the size of 
annual population change decreased (Figure 5). Power to detect a 5% annual decrease 
(corresponding to a 37% decrease over 10 years, on the original scale of counts) was only 0.42 for 
a 134-day annual monitoring period at ex = 0.05. 

4 DISCUSSION 

If parameter values in model (2) are fixed and there is no random variation, maximum and mean 
counts over any given set of dates will be linear functions of a i . With the addition of random error, 
Cti becomes an unbiased estimate of ai while 4 and rfl; become unbiased estimates of linear functions 
of a i. However, coefficients of variation for l1i and mi are much smaller than the coefficient of 
variation for Cti. Thus, for a fixed set of dates and parameter values, design-based indices l1i and mi 

are better than the model-based index Cti at tracking aunual changes in a i . Simulations demonstrated 
that these relations continue to hold even when parameters are not fixed, unless annual variation in 
parameter values is quite large. Parameter variances had to be increased 2 to 4-fold before Cti began 
to outperform I1 j • Furthermore, performance of Ct i was not robust to the form of the model 
generating counts. 

For the most realistic model, which did not allow negative counts, and for parameter variances 
estimated from 1986, 1989 and 1991 data, I1j always outperformed the other indices. 11; also 
appeared to be relatively robus~ because its performance was not affected by using a less realistic 
model that allowed negative counts. Simulations suggested that monitoring period length could be 
substantially reduced without affecting power to detect trends with I1 j • However, the simulations 
also suggested that power to detect trends with I1j would be relatively high (e.g., <: 0.80 at ex = 0.05) 
only if the trends represented relatively large changes in population size (e.g., r <: .08 for <: 10 
years). 

Results from simulations presented here should be considered cautiously. The simulations clearly 
showed that power for detecting trends with any of the indices depended on magnitude of annual 
variation in model parameters. The variance estimates I used were conservative in the sense that 
they included variation due to estimating parameters as well as annual variation in parameter values. 
However, estimated variances were based on data from only 3 selected years that may not represent 
the full extent of parameter variation. Therefore, results presented here are intended to be primarily 
illustrative of the approach. 
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Figure 1. Fitted values (lines) for daily counts (circles) of walruses at haul-outs on Cape Pierce, Alaska, 
1986, 1989 and 1991. 
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Figure 2. Power as a function of a-level for tests of trend based on al (solid lines), ml (dotted lines) and 
ul(dashedlines). Data were generated with model (2) assuming a 134- day annual monitoring period, a 
decreasing trend of 10% per year (r = 0.10) for 10 years, and parameter variances that ranged from 1 to 

6 times the estimated variances. 

Final conclusions should not be made until all historical data for Cape Pierce haul-outs are 
assembled and analyzed. However, preliminary results suggest that, ofthe indices I considered, 
mean annual counts may be the most sensitive and robust for monitoring walrus haul-outs. Also, 
it appears that it will be useful to focus future efforts on monitoring design refinements. It may still 
be possible to develop a more sensitive index by also adjusting for environmental covariates. An 
index such as a

i 
that adjusts only for temporal pattern may be useful for situations where timing of 

the aggregation peak is more variable relative to timing of surveys. 
In the context of simulation, it was convenient to test for trend by independently estimating 

indices for each year and then regressing the indices against year. More powerful tests for linear 
trends could be obtained by fitting data for all years to a single model representing ai or ui, as a 
linear function of year. For ai' this approach would require nonlinear regression. For U;, this 
approach would require autoregressive or other time-series models to account for correlation in daily 

counts. 
For the work reported here, I assumed that errors in counts of walruses at haul-outs were small 

compared to other sources of variation, so counts could be treated as ifthey were exact. However, 
thousands of walruses can be found at a single haul-out and they typically huddle so closely that 
their bodies overlap (Fay & Ray 1968), making them extremely difficult to accurately count. 
Additional research will be required to assess the variability and potential biases associated with 

errors in counts. 
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Figure 3. Power as a function of a-level for tests of trend based on al (solid lines), nltCdotted lines) and 
Ii I (dashed lines). Data were generated with a more realistic version of model (2) that did not allow 
negative counts. The model assumed a 1 34-day annual monitoring period, a decreasing trend of 10% per 
year (r = 0.10) for 10 years, and parameter variances ranging from 1 to 6 times the estimated variances . 

. ' 

Another important issue is the relation of the population using a given haul-out (or set of haul­
outs) to various populations of interest. In some cases, there may be interest in monitoring use of 
specific haul-outs for their own sake, and the population of interest will be the population using 
those haul-outs. Howev:er, if interest is in the population summering in Bristol Bay, for example, 
either all haul-outs in the bay must be monitored, or there must be some understanding of the pattern 
of walrus movements amonghaul-outs. Alternatively, if interest is in the Pacific walrus population, 
then there must be some understanding of walrus fidelity to Bristol Bay and how status of the 
primarily male summer population is related to status of the rest of the population. 
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Figure 4. Power as a function of a-level for tests of trend based on u;. Data were generated with a more 
realistic version of model (2) that did not allow negative counts. The model assumed a decreasing trend 
of 10% per year (r = 0.10) for 10 years, parameter variances equal to estimated variances, and annual 
monitoring periods ranging from 15 to 134 days. All except for the I 34-day monitoring period were 
centered on the expected day of the maximum adjusted count. 

1.0 .10 

0.8 
I.... 
Q) 

0.6 ~ 
0 

a... 0.4 

0.2 

0.0 
0.00 0.05 0.10 0.15 0.20 

a 

Figure 5. Power as a function of a-level for tests of trend based on u;. Data were generated with a more 
realistic version of model (2) that did not allow negative counts. The model assumed a 134-day annual 
monitoring period, parameter variances equal to estimated variances, and decreasing trends ranging from 
2% to 10% per year (r = 0.02 - 0.10) for 10 years. 
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