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Abstract

Ecosystem studies are difficult to interpret because of the complexity and
number of pathways that may affect a phenomenon of interest. It is not
possible to study all aspects of a problem; thus subjective judgment is
required to weigh what has been observed in the context of components
that were not studied but may have been important. This subjective judg-
ment is usually a poorly documented and ad hoc addendum to a statistical
analysis of the data. We present a Bayesian methodology for document-
ing, quantifying, and incorporating these necessary subjective elements
into an ecosystem study. The end product of this methodology is the prob-
ability of each of the competing hypotheses. As an example, this method
is applied to an ecosystem study designed to discriminate among com-
peting hypotheses for a low abundance of sea otters ata previously oiled
site in Prince William Sound, Alaska.

Introduction

Ecosystem approaches are increasingly advocated as a way of improving
the science and management of natural systems (Lackey 1998). For in-
stance, studies of the effects of anthropogenic stressors on a species can
be misleading if they ignore possible indirect effects acting through pred-
ator or prey populations (Higashi and Patten 1989). Further, natural changes
in these other components of the ecosystem may cause changes in the
focal population, masking or exaggerating the effects of the stressor (Piatt
and Anderson 1996). Many studies of the impacts of human actions on a
particular species now include research on other components of the eco-
system thought to be important to the focal species.
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Nonetheless, there are practical limitations to an ecosystem approach.
Because of cost and logistical constraints, not all ecosystem components
can be studied and therefore some indirect impacts may be missed. Ex-
perimentation or replication may not be possible, and it may thus be dif-
ficult to unambiguously assign causes to any observed differences in
populations between impacted and non-impacted sites, or before versus
after an impact at a single site. It is also highly likely that among the suite
of studies, some will give results that are to some degree contradictory.

For these reasons, interpreting the results of an ecosystem study re-
quires some degree of expert judgment. Synthesizing the results of nu-
merous studies of parts of a complex problem is difficult, and it may thus
be difficult for investigators to reach conclusions in a rational fashion.
Further, different scientists faced with the same evidence may arrive at
different conclusions. As the subjective interpretation of results tends to
be an ad hoc and poorly documented process, the sources of disagree-
ment may be difficult to uncover and resolve. This paper presents a struc-
tured method for documenting and quantifying the expert interpretation
of the results of an ecosystem study.

Proposed Methodology

The methodology presented here is designed for testing ecosystem-level
hypotheses. It integrates studies of diverse components of the ecosys-
tem, summarizing the results as the relative evidence for each hypothesis
from each study and the overall evidence for each hypothesis from the
ensemble of studies. Its Bayesian features consist of incorporating and
quantifying the subjective step of interpreting results, and calculating a
probability that each hypothesis is true.
The method consists of the following steps:

1. Generate hypotheses
2. Summarize the experiments and their results

3. Create a table of the expected results under each hypothesis if each
experiment were ideal

4. Calculate the probability of the observed result under each hypothe-
sis using statistical considerations

5. Adjust probabilities by considering potential violations of statistical
assumptions

6. Adjust probabilities to account for differences between the hypothe-
ses tested and the hypotheses of interest

7. Summarize the evidence for each hypothesis, accounting for depen-
dencies among experiments
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Table 1. Hypothetical results of a set of ideal experiments.

Hyp. 1 Hyp. 2 Hyp. 3 Hyp. 4
Study A Positive Negative Negative Positive
Study B Negative Negative Positive Negative
Study C Positive Positive Positive Negative

Steps 3-6 deal with eliciting statements of probability from experts.
Such elicitations can be problematic if experts are unfamiliar with trans-
lating their experiments into numerical probabilities (Morgan and Henri-
on 1990, Ch. 7). Our sequence of steps is designed to overcome such
problems by sequentially considering several sources of uncertainty, pro-
gressing from the most to least familiar. At each of the seven steps, in
particular those where subjective judgment is required, the rationale lead-
ing to the decision should be thoroughly documented.

Step 1. Generate Hypotheses. The first step is to have the experts iden-
tify the hypotheses that are the competing explanations for the phenom-
enon under investigation. It is important that the hypotheses be both
exhaustive and mutually exclusive. If not, the confidence assigned to some
hypotheses will be overstated, as the evidence for them will in some re-
spects be counted twice.

Often, there will be reason to believe that several of the hypothesized
phenomena might act simultaneously. There are two principal ways of
constructing mutually exclusive hypotheses if this is a possibility. The
first is to consider a “multiple causes” hypothesis. The second is to rede-
fine the hypotheses to allow minor effects of other factors. For instance,
the two hypotheses “effect is produced by factor A" and “effect is pro-
duced by factor B” can be made mutually exclusive by redefinition as “ef-
fect is principally produced by factor A” and “effect is principally produced
by factor B.”

Step 2. Summarize the Available Data. In this step, the studies and
their results are summarized. For clarity, it is often more useful to use a
short verbal description of the results. For instance, a study of differences
in prey abundance between control and treatment might be summarized
as “much greater abundance found at the control site.”

Step 3. Consider Ideal Studies. The third step in this process is to lay
out a table with the different hypotheses as the top row and the different
experiments as the left-most column (Table 1). Then, have the experts fill
out this table as if each study were an ideal experiment; i.e., there was no
possibility of either false positive or false negative results.
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Table 2. Table of likelihoods.

Hypothesis 1 Hypothesis 2
Study A P(Result of A|Hyp. 1) P(Result of A|Hyp. 2)
Study B P(Result of B|Hyp. 1) P(Result of B|Hyp. 2)

P(Result of A|Hyp. 1) means the probability of getting the observed result of Study
A if Hypothesis 1 were true.

In the hypothetical example in Table 1, Study A would distinguish
between Hypotheses 1 or 4 and Hypotheses 2 or 3. In combination, the
three studies would be able to determine which hypothesis was true.

Step 4. Statistical Considerations. While ideally the three studies would
determine which hypothesis was true with 100% accuracy, in the real world
misleading results may be obtained. One of the ways this may happen is
through random sampling error. Often, almost any result is possible un-
der any of the hypotheses. Nonetheless, the observed result will be more
probable under some hypotheses than others.

The objective of this step is to calculate these relative probabilities,
otherwise known as the likelihoods of each of the hypotheses (Gelman et
al. 1995, Ch. 1). Often, with continuously distributed variables, the likeli-
hood is a probability density rather than a probability per se. Likelihoods
(Table 2) are usually obtained from standard statistical distributions such
as the normal or binomial. The exact distribution used depends upon the
assumptions made about the experimental data, such as whether each
point is independent and identically distributed, whether the sampling
variance is constant, etc.

Table 2 shows the first of a series of steps in which experts are asked
to assign probabilities to the competing hypotheses. Some experts are
unfamiliar with quantitative probability statements and scientists in par-
ticular are often uncomfortable making assertions about the relative mer-
its of competing hypotheses without conclusive evidence. This step is
important in that it introduces experts to assigning probabilities to the
hypotheses, yet does so in a rigorous way using familiar statistical calcu-
lations.

Step 5. Account for Possible Biases in the Test or Experimental Results.
The assumptions of statistical tests are rarely exactly met. Samples may
not be completely independent, important sources of error may not be
included in the statistical model (e.g., ignoring error in the measurement
of the independent variable), and measurements may have some unknown
biases. Historically, statistical confidence tends to overstate the certainty
of scientific results (Henrion and Fischoff 1986).
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In constructing the table of likelihoods of results, this overconfidence
needs to be accounted for. Generally, the effect of such errors is to make
the probabilities of the result under each hypothesis more similar. Based
on their knowledge of the experiment, experts should determine which
assumptions of the test are likely to be violated, and to what degree. These
judgments are to some extent subjective, but once made the statistical
literature or computer simulations can provide guidance on their likely
effects. In consultation with a statistician, the experts should adjust the
table of probabilities to account for such violations.

Step 6. Account for Differences Between the Statistical Hypothesis Being
Tested and the Biological Hypothesis That Is Actually of Interest. Often, an
experiment to test a hypothesis tests it only indirectly. The results may
thus be ambiguous if the indirect indicator could occur in several ways,
some of which are not related to the hypothesis.

For example, if the hypothesis were that some population was affect-
ed by an environmental contaminant, an investigator might test the envi-
ronment for the presence of the contaminant and test individuals for signs
of poor health. A positive result in either case would not necessarily im-
plicate the contaminant; the contaminant might be present yet not be
causing health effects, or poor health might be due to causes other than
the contaminant.

As in step 5, the effect of a difference between the hypothesis tested
and the hypothesis of interest is to even further equalize the probabilities
of the observed results under each hypothesis. The appropriate amount
of adjustment of the table entries depends on the probability of other
(possibly unknown) alternative explanations for the test results.

Such assessments are unavoidably subjective and require the judg-
ment of experts. Hopefully, by this point in the process the experts are
comfortable with assessing the relative probability of the data under each
hypothesis and how violations of assumptions may result in misleading
experimental results. It is crucial that they consider alternative explana-
tions for their data yet not be paralyzed by such possibilities. They should
be willing to examine data that seems to strongly favor one hypothesis
and consider whether there are other, possibly unstudied ecosystem path-
ways that could produce similar results and state how probable they feel
such pathways are.

Step 7. Summarize the Evidence. In this step, the table of probabilities
is summarized to derive the overall weight of evidence for each hypothe-
sis provided by the ensemble of studies. If the studies are independent,
then elementary statistical theory says the joint likelihood of each hy-
pothesis is simply the multiplication of its probability under each study
(equation 1). The overall likelihood of each hypothesis is then simply the
product of its column of probabilities (here R1, R2, and R3 signify the
results of experiments 1, 2, and 3, respectively).
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Likelihood of hypothesis = P(R1lhyp.) x P(R2|hyp.) x P(R3lhyp.) (1)

The different hypotheses can then be compared in terms of their rel-
ative likelihoods. This comparison is easier if the likelihoods are re-scaled
so that the sum of all of the likelihoods is 1. From a Bayesian perspective,
each re-scaled likelihood could then be interpreted as the probability that
a hypothesis was true.

Complication A. Dependencies among Results. There are two ways that
experimental results might not be independent. First, the data from two
experiments may have been taken from the same random sample. Second,
two experiments may measure the same ecological phenomenon two dif-
ferent ways. In either case, it is not appropriate to treat the results as
providing independent evidence bearing on the alternative hypotheses;
i.e., simply multiplying the probabilities of the two experiments together
will overweight the evidence.

There are several possible methods to account for dependencies among
experimental results. If experiments are highly interdependent, they should
be lumped and a single probability of each hypothesis calculated for the
ensemble results. If experiments are only partially dependent, the corre-
lation of results must be accounted for. If the correlation can be calculat-
ed, probability theory provides methods for calculating a joint probability.
If not, a value must be obtained from experts, although experts have been
found to perform poorly at providing a numerical value for correlation
coefficients (Morgan and Henrion 1990, Ch. 7).

A more intuitive method for dealing with partially correlated results
is to ask investigators to provide an estimate of the “effective” number of
experiments. For instance, investigators may feel that dependence between
two experiments is such that they jointly provide only as much evidence
as 1.5 independent experiments. Then, the appropriate adjustment would
be to raise each of the probabilities to the 0.75 power (e.g., equation 2). In
general, if N experiments are correlated so that the effective number is E,
probabilities for hypotheses for each experiment should be adjusted by
raising them to the E/N power.

Likelihood of hypothesis = P(R1|hyp.)*” x P(R2|hyp.)*" (2)

Complication B. Prior Probabilities. Bayesian statistics involves multi-
plying the likelihoods by a set of prior weights (the prior probabilities) for
the hypotheses before re-scaling to calculate the posterior probabilities.
In the Bayesian approach, these prior probabilities reflect the weight ac-
corded each hypothesis before the experiments were conducted. Assum-
ing the probability of each hypothesis to be proportional to the joint
likelihoods treats each hypothesis as being equally likely a priori, thus
letting the data determine the relative probability of each hypothesis. While
this is intuitively appealing, it may not be appropriate.
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For instance, if the analysis were being used in a legal proceeding, it
might be appropriate to give the benefit of the doubt to the defendant by
assigning small prior weights to hypotheses implicating the defendant.
Similarly, in investigating current scientific theory a high prior weight
might be assigned to the currently accepted paradigm, so that a novel
competing theory would not get much credence unless the evidence for it
was overwhelming. An alternative to using prior weights is to calculate
probabilities only from likelihoods, but require a very high probability
that a hypothesis is true before acting on it. Whatever the prior weights, if
data strongly support one hypothesis over the others the final probabili-
ties will reflect this.

Standard Bayesian practice is to compare the evidence for competing
hypotheses using Bayes factors (Kass and Raftery 1995). The Bayes factor
is simply the ratio of the posterior probabilities of two competing hypoth-
eses divided by the ratio of the prior probabilities assigned before the
experiments were conducted. When the prior probabilities of the hypoth-
eses are equal, this is simply the ratio of the posterior probabilities.

An Example: Sea Otters after the
Exxon Valdez Oil Spill

On March 4, 1989, the supertanker Exxon Valdez spilled nearly 42 million
liters of crude oil in Prince William Sound, Alaska (Spies et al. 1996). This
spill is hereafter referred to with the acronym EVOS. Sea otter populations
in oiled areas suffered high mortality (Loughlin et al. 1996). Other compo-
nents of the ecosystem were likewise severely affected. Five years after
the spill, residual oil was present in sediments and mussel beds in some
areas of the spill (Spies et al. 1996). Even today, residual oil is found in
some areas.

The Nearshore Vertebrate Predator (NVP) project (Holland-Bartels et
al. 1996), a multi-university and agency investigation funded by the EVOS
Trustee Council, is aimed at determining whether top predators in Prince
William Sound are still suffering the effects of the oil spill. The question is
difficult to answer unambiguously because of the complicated nature of
the ecosystem and the lack of data from the period before EVOS. The NVP
project studies predator populations from several points of view, and also
looks at other components of the ecosystem on which these predators
depend. If a population is still being affected by EVOS, the study is de-
signed to ascertain whether the effects are due to the continuing toxic
effects of oil, a slow rate of recovery from past mortality, or an indirect
effect on some critical ecosystem component.

with limited resources and such an intensive approach, few popula-
tions can be studied. Sea otter abundance at Knight Island, which was
oiled in 1989, is lower than at Montague Island, which was not. The NVP
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sea otter study has focused on these two populations, trying to find the
reason for these differences in abundance. The principal hypotheses are:

1. Direct toxicity of residual oil. Residual oil is present and reducing
the fecundity and/or survival of otters at the oiled site.

2. Reduced forage due to oil effects. The initial impact of oil or re-
sidual oil is reducing prey available to sea otters.

3. Slow recovery due to demographic limitations. Aside from the
initial otter mortality from EVOS, residual oil is absent or does not
affect otters or their food. However, limitations on the maximum growth
rate of the population have prevented the population from reaching
capacity yet.

4. Natural differences in capacity. The oiled site has poorer or less
abundant otter habitat.

A variety of studies have been undertaken to determine which hy-
pothesis is the most likely. These include:

1. Demographic comparisons. Population abundance, age structure,
and reproductive rates were compared between islands.

2 Individual health. Otters were captured at both locations. Individu-
als were weighed and measured, and blood samples taken. In particu-
lar, blood cells and serum chemistry were examined for signals of
poor health, and a specific signal of exposure to oil (the enzyme P450)
was tested for.

3. Prey abundance and foraging success. The abundance and size
distribution of major prey items of sea otters were compared among
islands. In addition, foraging sea otters were observed to determine
relative rates of success in obtaining prey items.

Statistical hypothesis tests were performed for many of the studies
but are not reported here. We chose not to calculate likelihoods based
solely on statistical distributions—step 4 of our methodology—because
the limitations imposed by the design of the study tended to emphasize
the considerations dealt with in steps 5 and 6. There are multiple predic-
tions from each of the hypotheses, not all of which are distinct. Any par-
ticular study result may eliminate some hypotheses but leave several
others. More likely, any particular study result would be ambiguous, as
there is a small likelihood of almost any result from each hypothesis. In
particular, the detection of a phenomenon does not necessarily imply that
this was the cause of the difference in abundance between the two islands.
For instance, oil could be present but yet not greatly affect survival. Like-
wise, prey abundance could differ between one site and another but be
unrelated to the difference in otter abundance.
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Table 3. First attempt at integrating studies.

“A” “B” “C” “D”
Experiment and Demographic Food Oil Recovery has
(result) limitation limitation persistence occurred
Otter density 0.9 0.9 0.9 0.3
(K << M)
Repro. rates 0.9 0.5 0.7 0.9
(equal)
Blood chemistry 0.9 0.7 0.3 0.9
(equal)
P450 0.7 0.7 0.1 0.9
(equal)
Prey abundance 0.9 0.1 0.1 0.1
(M <K)
Foraging success 0.9 0.1 0.7 0.1
(M <K)
Joint likelihood 0.4133 0.0022 0.0013 0.0022
Probability of 98.6% 0.53% 0.32% 0.52%
hypotheses

Top row gives hypotheses, and left column gives experiments with the results in parentheses. "M” re-
fers to Montague Island (control), and "K" to Knight Island (oiled). The main body of the table gives the
probability of obtaining each experimental result under each hypothesis. The bottom two rows sum-
marize the result as the product of the probabilities for each hypothesis (i.e. the joint likelihood) and
the probability products re-scaled to sum to 100%.

Thus, the interpretation of the results of the studies required some
judgment. Our chief tool was to ask ourselves, “What is the probability we
would get the result we observed from Study ___ if Hypothesis __ was
true?” We attempted to quantify our impression of the strength of each
piece of evidence by filling out the table of probabilities, sequentially
considering what the result would mean in an ideal world, what the statis-
tical tests implied, how the assumptions of the tests might be violated,
and what mechanisms might cause the results to be misleading.

We felt our ability to discriminate among probability levels was fairly
coarse. Accordingly, we initially filled in the table of probabilities verbal-
ly, using the categories “high,” “moderate-high,” “moderate,” “low-moder-
ate,” and “low,” which we later replaced with 0.9, 0.7, 0.5, 0.3, and 0.1,
respectively (Table 3).

The result of our first analysis was to assign more than a 98% proba-
bility to the hypothesis that the population differences were due to a de-
mographic limitation in the rate of recovery of the Knight Island population
from spill mortality. All other hypotheses combined had less than a 1.5%

"o
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probability of being true. We were unhappy with this result, as this high
degree of confidence did not reflect our personal higher degree of uncer-
tainty. We felt that the evidence for this hypothesis was not that strong.

In examining the reasons for this initial result, we identified three
principal sources of error. First, we overstated the power of the studies to
discriminate among hypotheses. For instance, we assigned a 0.90 proba-
bility of seeing greater prey abundance at the oiled site if demography
was limiting recovery, but only a probability of 0.10 under any of the
other hypotheses. We did not adequately address step 6 of our methodol-
ogy; for instance, there would be a fairly good chance of seeing higher
prey abundance at the oiled site under several alternative hypotheses.

Second, the range of hypotheses we considered was too narrow. In
retrospect, we felt there was a strong possibility that all of the hypotheses
might be incorrect, and some other factor might be responsible for differ-
ences between areas. This resulted in an unrealistically high probability
for the hypothesis most consistent with the data.

Third, we did not adequately account for dependencies among exper-
imental results (step 7, complication A). While we lumped most blood
chemistry measures into one result, we kept the assay for the enzyme
P450 (a more direct measure of exposure to oil) as a separate experiment.
Since this assay could indicate the same phenomenon, and was measured
on the same sample of animals, we felt the two results were effectively
equivalent to only 1.5 experiments. Similarly, measures of prey size, prey
abundance, and foraging success to some extent measured the same phe-
nomenon. In retrospect, we decided to consider them as equivalent to two
experiments.

We therefore revised the tabled probabilities, taking what we hoped
was a more realistic look at the power of the studies and adding another
alternative hypothesis to those we had listed. While we were able to think
of several specific alternatives, we felt the true explanation for population
differences might be something we hadn’t considered. Therefore, we add-
ed only one hypothesis; an “unknown causes” category. Meanwhile, the
completion of analyses of blood chemistry and the enzyme P450 suggest-
ed that residual oil might be present at the oiled site, and new information
became available about the size distribution of prey species (Table 4).

The revised table again supports the hypothesis that the populations
differ because the population in the oiled area has not had the time to
recover fully from the losses due to the oil spill. However, it shows even
greater support for the hypothesis that residual oil is still affecting the
population. The hypothesis that some unknown factor accounts for the
difference between populations is also quite probable.

Two hypotheses were eliminated from consideration, principally be-
cause of the forage abundance studies. Forage was more abundant and
foraging success higher at the oiled site. These results were not at all
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Table 4. Second attempt at integrating studies.

Experiment “A” “B" “C” “D” “E”
and Demogr. Food 0il Unknown

(result) limit limit persist Recovered  causes

Otter density 0.9 0.9 0.9 0.3 0.9

(K << M)

Repro rates 0.9 0.5 0.7 0.9 0.9

(equal)

Blood CBCs & 0.5 0.5 0.7 0.3 0.5

chemistry

(weak indication
of liver damage

at K)

P450 0.3 0.3 0.9 0.3 0.3
(M <K)

Prey abundance 0.9 0.1 0.5 0.3 0.5
(M <K)

Prey size 0.9 0.1 0.7 0.3 0.7
(M <K)

Foraging success 0.9 0.1 0.7 0.3 0.7
(M <K)

Joint likelihood 0.1581 0.0011 0.1744 0.0040 0.0764
Probability of 38.2% 0.3% 42.1% 1.0% 18.5%
hypotheses

Top row gives hypotheses, and left column gives experiments with the results in parentheses. “M" re-
fers to Montague [sland (control), and “K" to Knight Island (oiled). The main body of the table gives the
probability of obtaining each experimental result under each hypothesis. The bottom two rows sum-
marize the result as the product of the probabilities for each hypothesis (i.e. the joint likelihood) and
the probability products re-scaled to sum to 100%.

consistent with the food limitation hypothesis, and were also unlikely if
the population at the oiled site had recovered to its carrying capacity.
However, it should be noted that the “unknown causes” hypothesis, which
has a fairly high probability of being true, is not necessarily related to the
spill. Thus it would be inappropriate to say the probability that the popu-
lation is no longer suffering effects of the spill is only 0.01.

We will refine and expand this analysis as more data become available
and more experts are consulted. These results are not our final interpreta-
tion, and should be viewed as a preliminary analysis. We provided this
example solely to illustrate the use of the methodology.
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Discussion

The Bayesian aspects of the proposed methodology are (1) use of subjec-
tive expert judgment in interpreting indirect tests of hypotheses, and (2)
integration of experimental results and expert judgment into an overall
probability for each hypothesis using Bayesian probability calculations. A
large literature exists on using Bayesian methods to compare hypotheses
(Kass and Raftery 1995).

Bayesian methods have been criticized from a variety of standpoints
(e.g., Dennis 1996). The principal criticism is that Bayesian methods inject
subjectivity into scientific analyses that should be objective. However, in
extrapolating from the results of diverse studies on small aspects of a
larger question, subjectivity in the form of expert judgment is unavoid-
able. We propose a methodology that formalizes the intuitive process ex-
perts use in interpreting the results of ecosystem studies. This approach
clearly distinguishes subjective interpretation from experimental results,
and clearly shows the reasoning used.

Our methodology provides a tool for investigators to organize their
thinking. The ecosystem and the results of the numerous studies may be
too complex to be readily grasped in their entirety. By allowing investiga-
tors to approach the synthesis of the studies one element at a time, our
method increases the tractability of the process.

The methodology also facilitates openness and discussion, since sub-
jective components of the synthesis of the studies are documented and
quantified. It clearly shows why a particular conclusion was reached, and
what evidence investigators felt was ambiguous or particularly strong.
Areas of disagreement among investigators are also easily identified.

Our methodology is based on principles derived from other methods
widely used for eliciting probabilities from experts (summarized in Mor-
gan and Henrion 1990, Ch. 7). Examples of such methods include the Stan-
ford/SRI protocol (Spetlzer and Stael von Holstein 1975, Merkhofer 1987)
and the Wallsten/EPA protocol (Wallsten and Whitfield 1986). We've tai-
lored our methodology to the specific goal of summarizing the relative
support for alternative hypotheses from an interrelated but necessarily
incomplete set of studies.

Most methods for probability elicitation pay great attention to getting
experts comfortable with the idea of translating their knowledge and judg-
ment into probability statements, and to overcoming a tendency of ex-
perts to give probabilities that overstate the level of certainty (Tversky
and Kahneman 1982; Morgan and Henrion 1990, Ch. 7). Our solution to
these difficulties is to take experts through a specific sequence of proba-
bility elicitation steps. These start with specifying deterministic outcomes,
then progress through familiar specifications of probability (likelihood
calculations) to less familiar probability specifications (the effects of vio-
lation of statistical assumptions and of not directly testing the hypothesis
of interest). This sequence gradually introduces the process of making
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probability statements. It also sequentially introduces more and more forms
of uncertainty, continually forcing the expert to reflect on whether the
degree of confidence he’s previously expressed is appropriate.

Our example illustrates both the utility and limitations of the method-
ology. The summary table lists the hypotheses and the experimental re-
sults. Probabilities within the table explicitly document the experts’
interpretation of the consistency of the results of each experiment with
each hypothesis. The summary probabilities excluded two hypotheses but
retained three others, one of which appears to be only half as probable as
the other two.

However, the 18.5% probability assigned to the “Unknown Causes”
hypothesis makes interpretation of the other probabilities somewhat am-
biguous. Much of the probability assigned to this hypothesis may indicate
that recovery has occurred, and the differences we found are caused by
some unknown factor(s) unrelated to the spill. It is also possible that “un-
known causes’ represents effects related to the spill such as cascading
ecological effects. In either case, the results do provide guidance for fur-
ther research; they suggest that continuing studies should focus on hy-
potheses “A,” “C,” and “E.”

The necessity for re-evaluating our initial analysis because of unreal-
istic results in instructive. It reinforces the experience of others who have
found that numerical statements of probability given by experts tend to
be overly confident (Tversky and Kahneman 1982, Henrion and Fischoff
1986). Our second try produced a result that we felt better reflected the
strength of the evidence provided by the experiments.

There is a danger that allowing such reanalysis could result in inves-
tigators juggling numbers to arrive at a result that reflected their precon-
ceptions. However, an honest reappraisal of each element in the table is
not inappropriate. Most methods for probability elicitation do recommend
that assessors return to an earlier phase in the process whenever ques-
tioning reveals that the probabilities elicited clearly don’t reflect the ex-
pert’s judgment (Kadane et al. 1980; Morgan and Henrion 1990, Ch. 7,
Laskey 1995). We found the reanalysis of the table caused us to re-exam-
ine the basis of our interpretations; rather than reinforcing our precon-
ceptions, it tended to make us change them.

Use of our methodology will make it easier to examine the source of
differences in interpretation of a study. For example, a scientist who dis-
agreed with our conclusions might find that the basis of his difference
was the weight placed on the blood chemistry results. A sensitivity analy-
sis to alternative interpretations would be easy to perform by replacing
the disputed probability with an alternative value to see if this affected
the conclusions.

This method is not proposed as a substitute for good experimenta-
tion. With scarce, poor quality, and ambiguous data the conclusion reached
after applying this method will be that considerable uncertainty remains.
However, in such situations this methodology may identify areas of major



508 Adkison et al. — Integrating Ecosystem Studies

>

uncertainty and suggest fruitful lines of investigation. The major benefit
of this approach is the explicit documentation and quantification of the
unavoidable subjective interpretation of ambiguous results that arise in
many ecosystem investigations. In contrast, when strong experimental
designs are available that produce clear evidence, subjective interpreta-
tion will be minimized and investigators should reach consensus.
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