U-Pb Zircon geochronology and trace element analytical methods using Stanford-USGS SHRIMP-RG

Zircon grains were separated from the crushed and ground sample using standard magnetic and heavy
liquid techniques, hand-picked under a binocular microscope, and mounted in 2.54-cm epoxy discs.
Epoxy mounts were ground to expose grain interiors, polished, and imaged using cathodoluminescence
(CL) on a JEOL 5600 SEM to identify internal structure (rims, core, etc.). Prior to placing the mount in the
instrument, it was cleaned with soap and 1M HCI, rinsed in de-ionized water, and dried in a vacuum
over. The mount was then coated with approximately 10 nm of gold in a Denton sputter coater. Mounts
typically sat in a loading chamber at high pressure (10-7 torr) for several hours before being moved into
the source chamber of the Stanford-U.S. Geological Survey (USGS) Sensitive High Resolution lon
Microprobe with Reverse-Geometry (SHRIMP-RG) at Stanford University.

The sample was analyzed in a single analytical session in January, 2020. On the SHRIMP-RG, secondary
ions were generated from the target spot with a O2- primary beam varying from 3 to 6 nA. Mineral
surfaces were rastered by the primary beam for 120-180 seconds before data were collected. The
primary ion beam typically produced a spot diameter of 20-25 micrometers and a depth of 1-2 microns
for an analysis time of approximately 20 minutes.

The U-Pb zircon analytical routine followed Williams (1998), and data reduction utilized the SQUID
program (Ludwig, 2009). U-Pb isotopic compositions were calibrated by replicate analyses of zircon
reference material R33 (419 Ma; Black et al., 2004) or TEM2 (416.8 Ma, Temora-2; Black et al., 2004),
which were analyzed after every 4-5 unknowns. The zircon acquisition routine included analysis of
46Si+, 48Ti+, 49Ti+, 56Fe+, 89Y+, 139La+, 140Ce+, 146Nd+, 147Sm+, 153Eu+, 155Gd+, 163Dy160+,
166Er160+, 172Yb160+, a high mass normalizing species (90Zr2160+), followed by 180Hf160+, 204Pb+,
a background measured at 0.045 mass units above the 204Pb+ peak, 206Pb+, 207Pb+, 208Pb+, 232Th+,
238U+, 232Th160+, 238U160+, and 238U1602+. Measured 206Pb/238U was corrected for common Pb
using 207Pb, assuming 206Pb/238U—-207Pb/235U concordance, whereas 207Pb/206Pb was corrected
using 204Pb. The common Pb correction was based on a model Pb composition from Stacey and
Kramers (1975). Trace elements (Y, Hf, rare earth elements (REE)) were measured in mass order before
the geochronology peaks. Mounts were analyzed with 4-5 scans (peak-hopping cycles from mass 46
through 270) and measurements were made at mass resolutions of M/AM = 7500—-8500 (10% peak
height). Concentration data for U, Th and all of the measured trace elements were standardized against
MAD-green zircon (Barth and Wooden, 2010) or MAD-559 zircon (Coble et al., 2018), which had
standard deviations (20) of about + 4-5% for U and Th, + 3% for Hf, £ 5-10% for Y and the heavy REE
(HREE), £ 10-15% for the middle and light REE (MREE and LREE), and up to + 40% for La. Excel and the
add-in programs Isoplot 3.76 and Squid 2.51 (Ludwig, 2003, Ludwig, 2012) were used for data reduction,
following the methods described by Williams (1997) and Ireland and Williams (2003).
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