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Abstract The Mayfield method has been widely used for estimating survival of nests and young animals, especially
when data are collected at irregular observation intervals. However, this method assumes survival is constant
throughout the study period, which often ignores biologically relevant variation and may lead to biased survival
estimates. We examined the bias and accuracy of | modification to the Mayfield method that allows for temporal
variation in survival, and we developed and similarly tested 2 additional methods. One of these 2 new methods is
simply an iterative extension of Klett and Johnson's method, which we refer to as the [terative Mayfield method and
bears similarity to Kaplan-Meier methods. The other method uses maximum likelihood technigues for estimation
and is best applied to survival of animals in groups or families, rather than as independent individuals, We also
examined how robust these estimators are 1o heterogeneity in the data, which can arise from such sources as depen-
dent survival probabilities among siblings, inherent differences among families, and adoption. Testing of estimanor
performance with respect to bias, accuracy, and heterogeneity was done using simulations that mimicked a study
of survival of emperor goose (Chen canagica) goslings. Assuming constant survival for inappropriately long periods
ol time or use of Klett and Johnson's methods resulted in large bias or poor accuracy (often >5% bias or root mean
square error} compared to our lterative Mavfield or maximum likelihood methods, Owerall, estimator perfor-
mance was slightly better with our leerative Mayfield than our maximum likelihood method, but the maximum like-
lihood method provides a more rigorous framework for testing covariates and explicitly models a heterogeneity fac-
tor. We demonstrated use of all estimators with data from emperor goose goslings. We advocate that future studies
use the new methods outlined here rather than the traditional Mayfield method or its previous modifications.
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Many studies of the sunaval of nests or young
birds prior to fledging assume that survival is con-
stant over time (Schmidt and Whelan 199%).
However, constant survival may often be an unre-
alistic assumption, and modeling time or age-spe-
cific survival can reveal biologically meaningful
patterns (Grand 1995).

Independence of fates among study animals is
one of the basic assumptions of mark-recapture
studies for estimating survival rates in natural
populations (Burmham et al. 1987). (aven an
appropriate model, violation of this assumption
causes little bias in survival estimates but results
in underestimation of variances (Nichols et al.
1982, McCullagh and Nelder 1989:124-128).
Lack of independence can also result in the selec-
ton of inappropriate models and thus incorrect
inference about what factors are associated with
variation in survival (Anderson et al, 1994).
Methods for detecting lack of independence in
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survival among family members have been devel
oped (Winterstein 1992, Schmutz et al. 1995), but
these fail to provide a clear means for how to then
use data that contain dependencies in survival.

Loss and gain of voung in families due to adop-
tion is common, particularly tor precocial water-
fowl {Afton and Paulus 1992). Further, a het-
erogenous pattern of loss of young among
families is expected, as variation in lifetime repro-
ductive success can be large (Clutton-Brock 1988,
Newton 1989). This heterogeneity among ages
{time), families, adoptive events, and the predis-
position for siblings to die from the same mortal-
ity events all induce additional variation in data
beyond the expectation of a binomially distrib-
uted survival probability, A robust method must
account for this extra-binomial variation, or
overdispersion (Anderson et al. 1994), which
commonly occurs in survival data.

The Mayfield method (Mayfield 1961, 1975) has
long been used to estimate survival of nests and
young birds. The impetus for this method arises
from the common situation where individuals are
detected at irregular intervals of time, and conse-
quently, mortality rates are calculated as the number
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of mortalities divided by the sum of time all indi-
viduals were at risk of mortality—the concept of
exposure days. A constraint of this method has
been that survival is assumed constant for whatev-
er interval of days (or other ome unit) is used for
the summation of numbers at risk. Klett and John-
son (1982) modified the Mayfield method to allow
for temporal variation in survival and demonstrat-
ed the utility of this modification to nesting stud-
ies, This modification has also been favored for
studies of young broods, where the magnitude of
age- or time-related variation in survival is often
large (Grand and Flint 1996). We demonstrate 1n
this paper that the Klett and Johnson (1982) mod-
ification can sometimes be biased, and provide an
additional, iterative modificadon which removes
this bias. This new, iterative Mayfield method is
quite flexible in modeling temporal (or age) vari-
ation in survival and makes minimal assumptions
about the nature of the data. In the absence of
temporal variadon in survival, the iterative and
previous Mayfield methods provide similar results.

We also demonstrate a maximum likelihood
method. Like other similar maximum likelihood
methods (Johnson 1979, Bart and Robson 1982,
Heisey and Fuller 1985), this method requires
more assumptions about variation in data (e.g.,
random distribution of error) than the various
modifications of the Mavfield method. However,
our ML method allows for increases in family size,
explicitly models a heterogeneity factor, allows
for incorporation of covariates, and provides a
theoretically robust framework for comparison of
multiple candidate models that may potentially
fit the data (Burnham and Anderson 1998).

We first describe our 2 new methods (iterative
Mayfield and ML), and then present a simulation
study of these methods and their precursors to
assess bias and accuracy. We demonstrate use of
these methods with 1 year of data from a 4-year
study of emperor geese during brood rearing
{Schmutz et al. 2001). We conclude with a dis-
cussion of the merits of these methods and rec-
ommendations for their use.

THE ITERATIVE MAYFIELD METHOD

The Mayfield method (Mayfield 1961, 1975)
defines a daily mortality rate (DMR) as the total
number of mortalities divided by the total num-
ber of exposure days, where an exposure day 1s
obtained whenever an individual animal is
known to be alive at the start of a day and the fate
of the individual at the end of the day is certain.
The daily survival rate is then DSR = 1 - DMR.
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A complication occurs when observations are
made several days apart and an individual dies
beitween 2 successive observation times, because
then the exact number of exposure days becomes
uncertain. Johnson {1979) and Klett and Johnson
(1982} discussed Mayfield’s original method and
several modifications to allow for this uncertanty.
In particular, Klett and Johnson (1982) proposed a
madification that allows for temporal variation in
the DSKE. Onr iterative method is a simple extension
of this modification, but in terms of agespecific vari-
ation in the DSR. because we assume that the ages of
individuals are known when they are first observed.

Klett and Johnson's {1982} modification is based
on estimating for each day the number of indi-
viduals at risk, and the number of survivors from
those at risk the previous day. Following their
example, if an individual is known to be alive at
time 0 and known to be dead 7 days later, then this
individual may have died at any time in the 7 days.
Klett and Johnson (1982) suggest allocating the
single mortality to days in such a case using prob-
abilities conditional on mortality by day 7, based
on an assumed value for the DSR. For example,
the mortality occurs during day 2 with probability

Prideath on day Z|jdeath by day 7}
= Pr{death on day 2}/Pr{death by day 7}
= DSR(1 - DSR) /{1 - DSR").

This fraction of the death is therefore allocated
to day 2.

Numerical calculations show that the allocation
of mortality to days using this method is insensi-
tive to the actual value used for the DSR. How-
ever, as we demonstrate in a subsequent section,
if the true DSR varies rather than being constant,
then the allocation of mortalities by this method
leads to biased estimation of survival rates. This
bias is much reduced by using a generalization of
Klett and Johnson's method, which allows the
DSR to vary when calculating the probabilities of
mortality for different days. As an illustration with
the above example, let DSR, be the daily survival
rate for day i. Then the probability of the mortal-
ity occurring during day 2 would be calculated as

DSR, % (1 - DSR,)/(1 - DSR, x DSR, x DSR, x
DSR, x DSR, x DSR, x DSR,).

To use this generalization, an iterative approach
is needed. It proceeds by starting with a constant
inital value (say, 0.95) for all the DSR. All mor-
talities are then allocated to days according to the
probabilities of death on those days. This first allo-
cation is the same as used in Klett and Johnson’s
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method of allocation because the assumed D5SR is
the same on each day.

Having allocated the mortalities, it is possible 1o
calculate for each study day the number at risk w
mortality at the start of the day, and the number
surviving until the end of the day. This then
allows daily survival rates DSR;.,, DSR,,,
DSR; ), ete., to be estimated tor day 1, day 2, day
3, etc. These are the estimated values that are
obtained by Klett and Johnson's method.

The calculations are then repeated. Using the
daily survival rates DSR“:”, the mortalites in the
original data are allocated again to the possible
days where they could have occurred using the
probability of death on a given day, conditional on
the probability of death by the end of the observa-
ton interval being considered. Once this is done,
new daily survival rates DSR“E], DSRIQEJ’ DSR_‘.(?.)*
cte. are calculated for dav 1, day 2, day 3, ew.
These will differ to some extent from the est-
mates obtained from Kleu and Johnson's
method. Using these new esumates, the mortali-
nes can be allocated again to the possible days
when they could have occurred, and the daily sur-
vival rates are estimated again, After several iter-
ations the estimated daily survival rates change
litthe with each recalculation, and 20 iterations are
usually sufficient for convergence o fixed values,

A further modification involves averaging DSR,
or, more precisely, assuming that the DSR is con-
stant for blocks of d days. This is motivated by the
principle of parsimony (Burnham and Anderson
1992) because estimating a separate DSR for each
day can be expected to reduce the precision of
estimates if the true DSR changes little from day
to day. The calculations are done as follows,
assuming that after allocating mortalities to days
for the first time in the iterative procedure there
are estimated to be R, individuals at risk at the
start of day i, and 5; survivors at the end of that
day., An estimate of the daily survival rate for days
I to dis then the sum of the survival days divided
by the sum of the exposure days, which is

USR]—Ffl= {Si + 5-1+ . Slljf{.Rl - Rl"' - =+ Rd}'

Similarly, the daily survival rate for days d+1 1o 2d
15 estimated by

DSR .1 524 = (Sgap + Sgp + o+ 8540 (R +
Ry,p+ - + Ryy),

and so on for the later blocks of d days. These
survival rates that are constant for blocks of d days
can then be used for allocating mortalities to days
for the second step of the iterative process. This
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will give new estimates for the numbers at risk and
the numbers surviving each day, which can in turn
be used to determine new values for the d day sur-
vival rates, for the next iteration, and so on.

Once stable values for the exposure numbers R,
and the survivors 5, are obtained from the itera-
tions, they can be used in 2 alternative ways. First,
the estimates DSR4 DSR,, a4 DSBoy i age
eftc, can be used for the days that they relate to.
We refer to these as the smoothed iterative esti-
mates. Second, DSR; can just be estimated by
S-L,-’ & using the values from the final iteration.
We refer to this as the unsmoothed iterative est-
mate. We demonstrate later how consistent dif-
ferences between the smoothed and unsmoothed
estimates are an indicaton that the number of
days used for averaging is too large.

The smoothed and unsmoothed estimates may
both differ substantially from the estimates
obtained by Klett and Johnson's {(1982) method,
which amounts to a single iteration of the above
process with no averaging of survival rates over
days. However, it is interesting to note that if the
iteranve method is applied assuming a single con-
stant DSR rate for all days, then this should pro-
duce estimates that are rather similar to those of
Klett and Johnson. The only difference is that
the DSR used is determined trom the data
instead of being an arbitrary assumed value,

MAXIMUM LIKELIHOOD ESTIMATION

An alternative method to estimate the DSR uses
an approximate maximum likelihood approach.
We assume a piecewise survival function such that
the survival rate from age rto age t+ [ is

b, = expl-;), (1)

w20, for, sty withiy=0,andi=1,2, .., p.
That is to say, the DSR for ages 0 to t; days is
assumed o be exp(-a,), the DSR for ages £y to Ty

days is assumed to be exp(-,), and so on, with p
such intervals.

With no complications from heterogeneity, if N
goslings are observed in a brood at age athen the
number of observable survivors at age b > g, Hh,
would have a binomial distribution with mean

E{Hb|Na] = Na¢a¢'a+l'"¢b—]' {2}

and variance
1"'lr{I""I'I:ulj:"":la_::I = Hﬂ¢3¢ﬁ+] “'d}l_..—] {I - ¢;|¢a+|'“¢b-h |}' {3}

Estimating the unknown parameters £y, @y o
o is then a straighttorward application of gener-



J- Wildl. Manage. 630232001

alized linear modeling using GLIM or equivalent
software (McCullagh and Nelder 1989, Francis et
al. 1993), with a log link and a binomial distribu-
tion for errors.

Unfortunately, this approach cannot be used in
situations where it sometmes occurs that Ny =N,
because the binomial likelihood becomes unde-
fined. Such sitnations arise with emperor geese,
many additional waterfowl species (Afton and
Paulus 1992), and other taxa (Riedman [982)
due to brood mixing and adoption. Further-
more, the common approaches of using quasi-
likelthood (McCullagh and Nelder 1989), or
introducing random effects (Breslow and Clay-
ton 1993) to account for heterogeneity cannot be
used either for the same reason.

We have therefore allowed for heterogeneity by
assuming that the observable number of survivors
at time & from a brood of size N, at time a is
approximately normally distnbuted with a mean
given by equation 2 and a vanance given by

V (NyIN,) = DxV(NIN,), (4)

where N’[Hbm“} i5 the binomial vanance trom
equation (3) and D is a constant. Thus, we
assume that the binomial vaniance is inflated by D
because of adoptions and other heterogeneity in
survival probabilities. We are also assuming that
most extra-binomial variation is induced by het-
erogeneity among families, which seems reason-
able for waterfowl {Rotella and Rawd 1992, Flint
et al. 1993}, and likely many other taxa as well.

Given our assumptions, the log-likelihood func-
uon for the observed number n at the end of a
survival period is derived from the normal densi-
ty function and takes the form

Lyt D) = X [Helog, 120V (NN} -
bafn, ~ E(NG NPV (NN, (3)

where the summation is over all the instances in
the data set where a brood size is observed at a
time @ and then observed next at time & Maxi-
mum likelihood estimates of the unknown para-
meters are obtained by numerically maximizing
the function using Newton-Raphson iteration
{Manly 1985:406) after finding good initial
approximations using the algorithm AMOEBA
from Press et al. (1992).

An advantage of this approach is that the model
for survival as given by equation | can be extend-
ed easily to include covarnates such as birth date of
goslings. Another advantage is that the relative
fits of different models can be compared using
Akaike’s Informatuon Crnternon (AIC), which 1s
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defined as the deviance plus twice the number of
estimated parameters, where the deviance is
minus twice the maximized log-likelihood (Burn-
ham and Anderson 1998). The best model of
those considered is the | with the smallest AlC,
This criterion accounts for the fact that as the
number of parameters increases, the deviance of
models is expecied to decrease (fit bewer), but the
precision of esimated parameters also decreases.
Some caution is called for in using AIC for model
selecuon because of the approximate nature of
the normal distribution model being used, par-
ticularly when there are many instances of small
numbers at risk and small numbers surviving.,

COMPARISON OF METHODS OF
ESTIMATION

We conducted a simulation experiment to com-
pare various methods for estimating cumulative
survival. To ensure that our simulations closely
mimicked real data, we used the actual sample
size and observation schedule used in 1993 by
Schmutz et al. (2001) in their study of gosling sur-
vival in emperor geese. In that year, there were
344 sighting records of 83 individual broods,
resulting in 261 ume intervals for which the num-
ber in a brood was known at the start and the
end. Hence there were 261 terms in the log-like-
lihood function of equaton (5). Broods were
observed at 1 to 38 days old.

We simulated 5 scenarios of temporal variation
in survival. In the first 2 scenarios, the expected
DSR was constant for all ages at 0.95 and 0.98,
respectively. For the third scenano, the expecied
DSKE increased with time from 0.92 for ages 1-10
days, to 0.96 for ages 11-20, and to 0.99 for ages
of 21 days or more. This pattern is similar to that
observed in emperor geese (Schmuiz et al. 2001)
and other waterfowl populations {(Williams et al.
1993, Grand and Flint 1996, Flint and Grand
1997). For the fourth scenario, expected DSR
decreased with age from 0.99 for ages 1-10 days,
to .96 for ages 11-20 days, and to 0.92 for ages of
21 days or more. The fifth scenario contained
both increasing and decreasing survival as
expected DSE was 0.90 for ages 1-10 days, 0.99
for ages 11-20 days, and 0.95 for ages of 21 days
or more. The last 2 scenarios do not seem plau-
sible for geese, but may be relevant 1o other taxa
and allow us o examine the performance of
these methods with other patterns of survival.

We generated data with no heterogeneity, mod-
erate heterogeneity, and high heterogeneiry, cor-
responding to D equal o 1, 2, or 4 in equation 4.
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With no heterogeneity (D = 1) each individual
gosling at age ¢ was given a survival probability
equal to the expected survival rate for that age
and survived or died independently of the fate of
any other gosling. The number surviving any
particular interval of ome was therefore a ran-
dom value from a binomial distribution with a
mean and variance given by equanons (2) and
(3). With moderate heterogeneity (D = 2), the
mean of the number surviving an interval was stll
given by equation (2) but the variance was set at
twice the binomial vanance. With high hetero-
geneity (D = 4) the mean was again given by
equation (2) but the vanance was set at 4 times
the binomial variance. With D=2 and D = 4, the
number surviving any particular interval of time
was a random value from a normal distribution
with the appropriate mean and variance, round-
ed to the nearest integer, or set to 0 if the gener-
ated value was less than 0.5. We generated 100
sets of data for each survival scenario and each
level of heterogeneiry.
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Estimates were obtained by 9 different meth-
ods. These were: K&, Klett and Johnson's {1982)
modified Mavfield method; IT(1}, our iteratve
method with no averaging of survival probabili-
ties; [TSM(3), the iterative method with averag-
ing over 5 days and smoothed DSR; ITUSM(3),
the iterative method with averaging over 5 days
using unsmoothed DSE; TTSM{iﬂ}, ITUSM{10),
ITSM (20}, and ITUSM(20) being the smoothed
and unsmoothed esimates with 10- or 20-day
averaging; and ML, maximum likelihood estima-
tion with different estimated daily survival rates
for ages 1 to 10 days, ages 11 to 20 days, and 21 or
more days. Note that the intervals chosen for
constant survival rates for maximum likelihood
estimation match those used for scenanos 3 to 5.
The maximum hkelihood model was therefore
correct except for rounding and truncaton for
all simulations.

We used 2 metrics to compare the 9 methods of
estimation: the average absolute bias (AAB) and
rool mean square error (RMSE). We present

Table 1. Values of the average absolute bias for 9 methods of estimation with 5 survival scenarios and 3 levels of hetarogenaity
{D =1, 2, or 4) within each scenario. ML refers to maximum likelihood estimation. Average absolute bias definitions provided in tesd

Avarag-a absolute biases

Sunvival probability for days IT(5) IT{10) IT{20)
Scenaric 1-10  11-20 214 D K& IT(1) SM  USM SM  USM  SM USM ML
1 0895 085 095 1 16 04 03 02 03 043 0.3 0.3 0.3
2 16 15 06 05 04 04 0.3 0.4 1
4 14 27 12 11 0B 09 0.6 0.9 2
Avyg 15 15 07 06 05 05 0.4 0.5 1.1
2 098 098 098 1 07 ©07 07 06 05 05 0.3 0.4 0.7
2 03 13 05 06 02 03 0.3 0.3 0.4
4 06 28 07 03 04 03 0.1 0.3 0.8
Avg 05 16 06 05 04 04 0.2 0.3 0.6
3 082 0856 089 1 5 .7 17 16 18 18 4.3 3 1.7
2 57 1.7 24 22 18 2 4.3 2.6 1.5
4 5 0g 12 16 11 1.3 4.2 2.9 0.6
Avg 5.2 1.5 1.8 1.8 1.5 1.6 4.3 3.2 1.3
4 099 056 092 1 42 17 14 16 15 15 5.3 2.7 1.7
2 42 28 17 1.7 18 17 5.4 3z 2.7
4 57 44 25 23 25 25 5.8 3.8 3.7
Avg 47 3 1.9 19 1.9 1.9 5.5 3.2 2.7
5 09 089 085 1 65 17 18 2 19 2 8.8 4.8 2
2 7 18 2 24 2 2.1 8.9 4.6 2.5
4 85 2 13 18 17 186 8.9 4.5 1.8
Avg BT 1.9 1.7 2 1.8 18 8.8 4.6 2.1
Avg of all scanarios a7 18 13 14 12 13 3.8 2.4 18
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averages for these metrics calculated from est-
mated survival to 5, 10, 20, and 35 days of age.

AAB is the average difference between the
mean of the estimates of survival to 3, 10, 20, and
35 days rates and the true values for those survival
rates. RMSE is calculated as {(Bias)? + Variance}"
and is summanzed similarly to AAB. High values
of RMSE indicate an estimator is either strongly
biased, has a large vanance, or both.

When DSR was constant (scenarios 1 and 2), all
methods performed reasonably well with regard
o both AAB (Table 1) and EMSE {Table 2).
However, when DSR varied wvith ome (scenanos
3=5), the K&] method exhibited severe biases, as
did ITSM {20} and. to a lesser extent ITTUSM(20).
The biases with the K&] and ITSM(20) methods
(when DSR varied) led to overall poor perfor-
mance in terms of RMSE. The best methods
were ITSM{10) and ITUSM({10); however, this
result was not surprising because true survival
rates were constant for ages in 10-day blocks (1-10
days, 11-20 days, and 21 days or more). Averaging
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over 5 days or not averaging at all with the
iterative method generally gave estimates with hit-
tle bias, but 50} of estimates were substantially
higher.

The much reduced AAB and RMSE for
ITUSM{20)} compared to ITSM{20) suggests that
unsmoothed estimates are more robust than
smoothed estimates when an averaging period is
too long for daily survival estimates.

We conclude from this simulation experiment
that the K&] method of estimation is biased by
changing DSR, and that the iterative method
with averaging over an appropriate number of
days for survival estimates can remove this bias
almost entirely. Furthermore, the iterative
method with appropriate averaging can outper-
form maximum likelihood, again providing that
an appropriate averaging interval is used.

ACCURACY OF ESTIMATES

We used bootstrapping to assess accuracy of
survival estimates generated from the varous

Tabla 2. Aoot mean square arrors for 8 methads of astimation with 5 survival scanarios and 3 levals of heterogensity (D=1, 2,
or 4) within each scenario. Root mean square error definltions provided in text.

Hoot mean square ermors

Survival probability for days IT{5) T} IT{20)
Scenaric 1-10  11-20 21+ D K IT(1} SM LM SM LISM =M LISM ML
1 085 085 095 1 29 38 a5 a5 2.7 28 23 2.4 a1
2 3.9 5.8 5.4 5.6 4.1 4.3 3.6 3.9 4.8
4 4.7 7.3 71 7.2 55 5.6 4.7 5 6.8
Avg 3.8 5.6 6.3 5.4 4.1 4.2 3.5 3.8 4.8
2 098 098 098 1 27 35 33 3.3 2.9 3 2.5 2.7 34
2 3.7 4.8 4.8 51 4.2 4.4 3.8 41 a.8
4 5 6.8 6.4 6.7 5.8 5.9 4.9 5.3 5.5
Avg 38 5 4.8 51 4.3 4.4 a7 4.1 4.2
3 082 09 059 1 6.5 4.2 4 3.9 3.2 3.3 -] 4.4 3.7
2 6.9 5.5 5.6 5.6 4.1 4.3 6.3 49 5
4 V2 7.2 7.4 7T 5.2 2.5 6.8 5.7 ¥
Avg 6.9 5.6 5.7 57 4.2 4.3 6.4 5 5.2
4 088 088 082 1 5.3 4 3.4 36 31 a2 6.9 4.5 4.6
2 5.7 6.4 4.7 4.8 42 4.3 T2 52 4.8
4 7.3 7.5 6.6 6.7 5.8 59 8.2 6.5 8.1
Avg 6.1 5.6 4.9 2.1 4.4 4.5 7.4 5.4 5.5
5 0.9 0.99 0895 1 8.2 41 4 41 34 a5 10.7 6.8 3.6
2 9.8 5.4 5.4 56 4.1 4.3 11.2 7.3 5.1
4 8.7 7.9 7.5 7.7 5.9 6.1 11.7 8 9.6
Avg 9.5 58 5.6 5.8 4.5 4.6 1.2 7.4 6.1
Avg of all scenarios B 55 5.3 5.4 4.3 4.4 6.4 5.1 5.2
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methods {(Manly 1997). We used broods as the
sample unit, similar to Flint et al. (1995), and sus-
pect that most heterogeneity is among families in
real populations. The likely sampling error in
the estimate of the probability of survival o a par-
ticular age is then determined by generating
many bootstrap sets of data with the same num-
ber of broods as for the real data, but with the
data for each of these broods chosen by resam-
pling real broods with replacement.

The standard 95% bootstrap confidence inter-
val for the true survival probability to age ¢ days is

B, + 1.965D(8,) (6)

where ﬁl is the estimate of this probability from
the real data and SD (8} is the standard deviation
of the estimates of the same probability as found
from the bootstrap resamples (Manly 1997). A
madification of this procedure that might work
better if the standard deviations of estimates are
approximately proportional to their means is to
use log, (8} instead of 8, (Zar 1984},

With the maximum likelihood model, an approx-
imate covariance matrix is available for all of the esti-
mated parameters (Manly 1985:406). To calculate
SD(8) from likelihood theory, note that from equa-
tion (1} the survival rate to age t can be written as

B, = exp(-a/h, —ah, — . - mphp}l, {7

where h; is the number of days for which the daily
survival rate exp{-u.[] applies up to age ¢ (which
may be ). The estimated survival to age fis then

6 = exp(~ayh) — aphy - .. —ah),  (8)
where ﬂ'i 13 the maximum likelihood estimate of
;. The variance of log,.(8) is then given by

P
Varflog, () = -E: Z hihjCov(di, @j),  (9)
= i=

where Cm‘(ﬁi. {;j} can be approximated using the
covariance mairix obtained while fiting the
maodel. To obtain an approximate standard devi-
ation for 8, the standard result

SD(8,) = 6, SD{log, (8,)} = & [Varllog (8)11* (10)

can be used (Kendall and Stuart 1977).
Alternatively, the 5D with the maximum likelihood
method can be obtained by bootstrapping, in the
same way as for the other methods of estimation.
We investigated the validity of these confidence
limits for the simulated data in Tables 1 and 2.
For each of the 100 sets of data generated for the
15 sitmations considered (5 survival rate scenarios
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x 3 levels of heterogeneity), we generated 50
bootstrap samples o estimate standard devia-
tions, which suffice for a good estimate (Efron
and Tibshirani 1993:52). For each generated set
of data, bootstrap standard deviatons and confi-
dence limits were calculated for the 9 methods of
estimation considered before. For maximum
likelihood estimation, theory-derived standard
deviations and confidence limits were also
obtained wsing equation (9). As before, we sum-
marized results in terms of mean estimated sur-
vival rates to 5, 10, 20, and 35 days.

We calculated average values for the mean of the
estimated standard deviations of estimates as a per-
centage of the observed standard deviation. The
desired value is then 100, indicating that on average
estimated standard deviations equal the correct val-
ues. We also calculated the coverage (percentage
of imes that a nominal 9% confidence interval
actually included the tue value of the survival rate)
of confidence limits based on equation (6).

Bootstrap estimates of standard deviations were
usually approximately correct on average, but
standard deviations for maximum likelihood est-
mates using equation (9) were consistently too
low (Table 3). When the DSR was constant, so
that all methods of estimation had little bias, cov-
erage of bootstrap confidence limits was usually
less than the nominal 95%, varying from 81% to
94% for scenario averages (Table 4, scenarios |
and 2). With ML estimation, bootstrap confi-
dence limits were clearly better than those based
on equation (9). Also, limits based on 1ug‘,_l[él}
were slightly better than those based on equation
(6], either using the bootstrap or equaton ().

When daily survival rates varied, biases in the
K&, ITSM(20), and ITUSM(20) resulted in poor
coverage for some or all of the scenarios consid-
ered (Table 4, scenarios 3-5). The coverage for
the other methods of estimation tended to be
slightly low, except for the limits based on equa-
tion {(9), which were sometimes very low. Overall,
bootstrap standard deviations for estimates other
than ITSM{20) and TTUSM (20) are accurate,
and nominal 95% confidence limits for survival
estimates based on bootstrapping and a log trans-
formation are reasonable except that the actual
confidence level may be more like 90% than 95%.

The tendency for standard deviations to be too
low and the poor coverage of conbidence inter-
vals for maximum likelihood estimation when
equations (%) and (10) are used appears to be
mainly due to the fact that the approximate
covariance matrix calculated using likelihood
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theory tends to give values that are too low. At
least, an inspection of the simulation results
shows that in almost all cases the average of the
likelihood theory variances for the estimates of o

parameters are lower than the actual observed
variances for these parameters,

SURVIVAL OF EMPEROR GOOSE
GOSLINGS

We demonstrate in this section a detailed use of
these methods with data from a 1993 smdy of
emperor geese during brood rearing {Schmutz et
al. 2001). As noted before, there were 344 sight-
ing records of 83 individual broods, resulting in
261 time intervals for which the number in a
brood was observed at both the start and end of
the interval.

We estimated survval to 5, 10, 20, and 35 days
with each method. The variation among esti-
mates of cumulative survival to different ages
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indicates that choice of method is important
(Table 5). Estimates with and without smoothing
were very close for both 5- and 10-day averaging;
however, differences between smoothed and un-
smoothed esumates with 20-day averaging are a
clear indication that the assumption of a constant
DSR for ages 1-20, and then another constant
rate for ages 21-35 was not correct. 'We conclude
that averaging over 10 days is reasonable and
more parsimonious than averaging over 5 days.
We also analyzed these data with the ML method.
We fitted the model with expected numbers in a
brood at the end of a survival period given by
equation (2) and the variance given by equation
(4). We initially modeled 4 survival parameters
corresponding to ages 1-5, 6-10, 11-20, and >20
days, and construcied 2 models pertaining o
whether D = 1 or D was estimated. 'We also con-
structed models with less temporal variation in
survival, i.e., models with 3, 2, or only 1 DSR.

Table 3. Obsearved standard deviations as a percentage of the true standard deviations for 9 methods of estimation with 5 sur-
vival scenarios and 3 levels of haterogeneity (D = 1, 2, or 4) within each scenario. With maximum likelihood estimation (ML),
standard deviations were astimated using equation 10 (Apprax) or by boolstrapping (BS). Estimated standard deviation dafini-

tons provided in text.

Estimated standard deviation as a precent of the obsarved {irue) standard deviation

Survival probability for days IT{5) IT{10) IT{20) ML

Scenario 1-10  11-20 21+ D K&l IT(1}) SM UsMm  SM USM SM LUSM  Approx BS
1 095 085 095 1 105 a5 aB o8 103 103 102 104 84 o6
2 a2 o1 a5 o7 a9 a9 a3 o8 84 o4

4 a4 Ba g2 95 89 102 94 86 68 B9

Avg a7 21 85 a7 101 101 96 89 79 83

2 088 0988 0948 1 a5 a5 a5 95 a3 a5 o8 a5 73 a3
2 a7 a5 94 95 a8 g 102 a8 95 a7

4 o4 80 a2 25 a5 a8 o8 86 88 a8

Avg a5 a3 o4 95 as ar 100 a7 a5 96

3 092 09 099 1 103 85 99 2 88 a7 95 98 75 a2
2 113 100 107 107 108 "Moo N7 113 75 85

4 o8 93 95 ar 100 100 o0 99 &1 a0

Avg 105 96 100 104 102 102 103 108 71 83

4 089 0% 092 1 107 a7 o8 a8 102 100 102 10 66 a1
2 101 a0 ag 100 102 104 29 101 73 o2

i o9 86 a1 84 102 103 85 100 B3 T8

Avg 102 a1 a5 a7 102 102 a9 101 G4 ar

5 0.9 0.99 095 1 106 95 06 98 85 =i a8 &8 a1 o6
2 111 101 103 105 106 107 108 109 74 o6

4 94 BB 80 92 Ba a1 o0 82 45 76

Avg 104 o4 96 a7 =) o8 o8 100 &7 80

Avg of all scenarios 101 a3 a6 or 89 100 99 100 T3 gz
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Table 5. Estimates of the cumulative survival rate of emperor goose goshings to 5, 10, 20, and 35 days in 1893, with standard

deviations (S0} calculated by bootstrapping.

Mathod of Survival o age 5 Survival to age 10 Survival to age 20 Survival to age 35

astimation Estimate 85D Estimate 5D Estimate sD Estimata sD

K& 0.818 0.027 0.704 0.042 0.588 0.042 0.418 0.068
IT(1) 0.727 0.053 0.638 0.055 0.604 0.045 0412 0.078
ITUSM{5) 0.725 0.060 0.653 0.051 0.604 0.044 0419 0.065
ITSM(5) 0.725 0.060 0.652 0.051 0.605 0.044 0.420 0.083
ITUSM(10} 0.786 0.034 0.651 0.050 0.600 0.046 0423 0.065
ITSM{10) 0.804 0.032 0.648 0.051 0.586 0.047 0.424 0.061
ITUSM{20) 0.814 0.030 0,699 0.041 0.584 0.046 0.420 0.063
ITSM{20) 0.864 0.020 0.748 0.035 D.556 0.051 0.408 0.057
ML 0.759 0.064 0.610 0.059 0.544 0.052 0.459 0.078

The best model, as judged by AlC, estimated D
and 2 survival parameters (Table 6). However,
this model was only slightly better than the cor-
responding model with 3 survival parameters
(AAIC = 1.16) or the corresponding model with 4
survival parameters (AAIC = 2.28). Estimates for
the minimum AlIC model were as follows, with
the approximate standard deviations obtained
from 200 bootstrap samples shown in parenthe-
SE5: [i, = (0.0474 (0.0085), 111 =0.0121 {0.0035) and
D=3.22 (0.49). ML estimates were quite similar to
estimates from [TUSM(10) for 5 days, but lower
for 10 and 20 days and higher for 35 days.

We show the standardized residuals for the fit-
ted model, which are the differences between the
observed number of survivors and the expected
number from the fitted model, divided by the
standard deviation for the expected number of
survivors as given by the square root of the vari-
ance from equaton (4) (Fig. 1). Large posiuve
residuals arise from increases in brood size, and
large negative residuals result from an unusually
large loss of goslings. The residuals appear 1o be

reasonably random as required for our model to
be acceptable.

The maximum likelihood estimate of D {3.22)
implies that the variance in the numbers surviv-
ing over observation periods was about 3 times as
large as expected from purely binomial variaton,
The amount of heterogeneity displayed by the
data is therefore considerable., Our simulations
indicated that estimates of D values are usually
slightly biased upwards, a result similar to that
obtained by Anderson et al, (1994). Neverthe-
less, it is clear that the heterogeneity in the data
is substantial.

DISCUSSION

Many studies that address major ecological
issues continue to use methods of survival esti-
mation that assume constant survival, without
testing this assumption, and do not account for
the heterogeneity likely o be present in such
data (Martin 1998). Use of biased methods facil-
itates a bias in our ecological understanding.
Because our iterative method outperformed

Table 6. Deviances and AIC values for maximum likelinood modeds fitted o 1993 data concarning survival rates of amperor goose

gaslirgs.
Model Murnber of Deagress of Deviance

paramaters freedom AN AAIC
4 survival parameters, D=1 4 258 B04.14 812.14 145.80
4 survival parameters, D estimated 5 257 B58.52 BEB.52 2.28
3 survival parameters, D=1 3 258 804,68 810.68 144.44
3 survival parameters, D estimated d 258 659.4 657.4 1.16
2 survival parameters, D=1 2 260 B05.74 808,74 143.50
2 survival parameters, D estimated 3 258 B50.24 666.24 0
1 survival parameters, D=1 1 261 841.74 843.74 177.50
1 survival parameters, D estimated 2 260 TOF .22 T11.22 44.98




268

STANDARDITED RESIDUAL

8 =¥
E‘-
- = 4 o+
+ * 'H'I'ir
o -r"‘"‘*" ™ ey
- +
# + + *
. L tﬁgﬁ*ﬁ“h .,.:# o,
- + .
B oal %
4+
& —t :
a &4 B a 10

ESTIMATING BROOD AND NEST SURVIVAL * Manly and Schmufs

J. Wildl. Manage. 65(2):2001

# ¥

S
é:-++ H +++

ol—i§ it 4

: *

T id

ot 3
+
* L R |
o F 4 & 8 0

MUKEBER AT START OF TIME INTERVAL

Fig. 1. Standardized residuals plotted against the age of the brood at the start of the survival inferval, the brood number, the
expacied number surviving at the end of the survival period, and the number at the start of the survival period. The residuals
are from the maximum likelihood modal fitted to 1993 dala concarning survival of amperar goose goslings.

existing methods and is readily programmed on
a computer, we see no reason for continued use
of the Mavtield method or its previous modifica-
nons. Results from our iterative method will di-
fer from those of prior Mayfield methods only
when survival is not constant, and the iterative
method will accurately model such nonconstancy
in survival. The iterative Mayfield method is
applicable to data concerning survival of egys,
nests, or identfiable families of individuals.
Numbers of individuals can be assessed at either
regular {structured) or irregular periods of time
and knowing unique identities of individuals
within clutches or families 15 not required.

Our simulation study demonstrated that the
estmator with the most bias was | where true sur-
vival varied, but we modeled survival as constant
for 20-day periods. With this variation in true sur-
vival, a traditional Mayfield approach, which
assumes constant survival for the whole study
penod (here 38 days), would likely have per-
formed even more pootly. In such cases, Klett
and Johnson's (1982) modified Mavfield method
performed only slightly better with respect to bias
and bhad the poorest coverage. Our iterative
modification to Klett and Johnson's methaods
clearly resulted in improved estimates. The least

biased and most parsimonious model can be
found by allowing for time-varving survival but
averaging survival over an appropriate number of
days. A protocol for finding an appropriate num-
ber of days for averaging begins with a general
model that averages for as short a period of time,
say 1 to 5 days, as one deems biologically plausi-
ble. Then, one can construct additional models
with averaging over progressively longer periods.
When smoothed and unsmoothed estimates start
to diverge irom each other, then averaging peri-
ods are too long.

We point out that our iterative Mayfield
method is essendally a Kaplan-Meier model {(Pol-
lock et al, 1989) in that it is a measure of binomi-
al survival being calculated as the number of sur-
vivors divided by the numbers at risk. Mayfield
methods have most frequently been applied to
data collected with unstructured designs so that
individuals within a study are observed on differ-
ent days and with differing amounts of tme
clapsing since their prior observation. In con-
trast, Kaplan-Meier methods rely on a structured
design wherein the status of all individuals are
assessed in each observation period (Pollock et al.
1989). Flint et al. (1995} demonstrated that with
a structured set of data, Mayfield and Kaplan-
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Meier methods provide identical point esimates
and similar confidence interval coverage. Owur
iterative Mayfield method with no averaging com-
putes numbers of mortahties and exposure days
for each day of study, and thus can be thought of
as a structured sampling approach with daily
intervals of observation. Given the §, and R, val-
ues for each day, point estimates for Mayfield and
EKaplan-Meier methods are identical (Flint et al.
1995). The difference between methods is simply
that for Kaplan-Meier models, the real data
would have to actually reflect daily observation of
all individuals, whereas with our iterative May-
field method we compute these daily quantities
from an unstructured design.

Our ML method was slightly more biased and
had poorer coverage than our iterative method.
Use of a normal rather than binomial approxi-
mation was necessitated by frequent increases in
brood sizes, but the finite set of small brood sizes
and associated rounding and truncation con-
tributed to this approximation sometimes being
poor and contributing to the underperformance
of the ML. model. If one wishes to study survival
of individuals where increases in number do not
happen (as in nest survival studies}, then other
ML methods based on a binomial distribution
would be more appropriate (Bart and Robson
1982). Nonetheless, for estimating survival of
broods, the ML approach (with bootstrapping) is
useful as it outperforms previous methods, can
incorporate covariates, and covariates can be
evaluated via model selection in a likelihood con-
text. Additionally, our ML method is robust in
the presence of heterogeneity (as is the iterative
method) and it estimates a heterogeneity factor.
This heterogeneity parameter may sometimes be
of biological interest, particularly if there is only
1 suspected source of heterogeneity.

For our empirical data on emperor geese, we
suspected there to be 3 significant sources of het-
erogeneity other than time (age) variation—adop-
tion events, correlated survival among siblings,
and imherent differences among broods. The
structure of our data was inadequate 1o distinguish
among these sources. . The latter 2 sources could
be distinguished if broods experienced multiple
events of large losses {or gains), rather than 1 or
no such large events per brood as with our data.

We have introduced 2 methods for estimating
survival of nests and young animals. These meth-
ods are superior to previous methods, and we
suggest that furure investigators employ them.
Computer programs for these iterative Mavfield
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and maximum likelihood methods can be down-
lvaded from wwwwestinc.com. We point out
that similar simulation studies could be carried
out to mimic cach researcher’s particular study
and thus identfy the exient of biases to be
expected when using these and the prior meth-
ods for estimation.
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